Hostname: page-component-77c89778f8-7drxs Total loading time: 0 Render date: 2024-07-18T15:33:25.912Z Has data issue: false hasContentIssue false

High frequency contact mechanics based on quartz crystal resonators: application to polymer surfaces

Published online by Cambridge University Press:  11 February 2011

Steffen Berg
Affiliation:
Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
Diethelm Johannsmann
Affiliation:
Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
Get access

Abstract

High frequency contact mechanics experiments were carried with a quartz crystal resonator, the surface of which was coated with a polystyrene film. The experiment is based on the ring-down of the resonator after the electrical excitation has been stopped. When a tip touches the quartz surface, the shear motion of the quartz is perturbed, which can be used to study force-displacement and force-speed relations in the contact zone. A nonlinear spring constant κl(x) and a nonlinear friction coefficient ξl(ẋ) are explicitly derived. When a ceramic sphere touches a polymer film the friction force depends more than linearly on lateral speed. This contrasts to metal-metal contacts or contacts between ceramic surfaces, where the friction force depends either linearly of sub-linearly on speed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Perssons, B.N.J., Sliding Friction, Springer, Heidelberg, 1998.CrossRefGoogle Scholar
2 Müser, M. H., Atomistic Simulations of Solid Friction, Lecture Notes in Physics, Springer, Berlin.Google Scholar
3 Krim, J., Scientific American, October 1996, 4856.Google Scholar
4 Meyer, E., Overney, R.M., Frommer, J., in Bushan, B. (edt.): Handbook on Micro/Nano Tribology, p. 223, CRC Press 1995.Google Scholar
5 Israelachvili, J.N., in Bushan, B. (edt.): Handbook on Micro/Nano Tribology, p. 267, CRC Press 1995.Google Scholar
6 Laschitsch, A., Johannsmann, D., J. Appl. Phys. 85, 3759 (1999).CrossRefGoogle Scholar
7 Laschitsch, A., Bailey, L.E., Tyndall, G.W., Frank, C.W., Johannsmann, D., Appl. Phys. Lett., 78, 2601 (2001).CrossRefGoogle Scholar
8 Berg, S., Ruths, M., Johannsmann, D., Phys. Rev. E 65, 026119 (2002).CrossRefGoogle Scholar
9 Rodahl, M., Höök, F., Krozer, A., Brzezinski, P., Kasemo, B., Rev. Sci. Instrum. 66 (7), 3924 (1995).CrossRefGoogle Scholar
10 Bottom, V.E., Introduction to Quartz Crystal Unit Design, Van Nostrand Reinhold, New York, 1982.Google Scholar
11 Berg, S., Johannsmann, D., Ruths, M., J. Appl. Phys‥ 92, 6905 (2002).CrossRefGoogle Scholar
12 Kim, J.M., Chang, S.M., Muramatsu, H., Appl. Phys. Lett. 74, 466 (1999).CrossRefGoogle Scholar
13 Borovsky, B., Mason, B.L., Krim, J., J., , J. Appl. Phys. 88 (7), 4017 (2000).CrossRefGoogle Scholar
14 Sasaki, A., Katsumata, A., Iwata, F., Aoyama, H., Jpn. J. Appl. Phys. 33, L547 (1994).CrossRefGoogle Scholar
15 Israelachvili, J.N., Intermolecular and Surface Forces, 2nd ed., p. 328, Academic Press, London 1991.Google Scholar
16 Deresiewicz, H., Adv. Appl. Mech. 5, 233 (1958).CrossRefGoogle Scholar
17 Johnson, K., Contact Mechanics, Cambridge University Press, New York 1985.CrossRefGoogle Scholar
18 Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P., Numerical Recipes in C, 2nd ed. Cambridge University Press, Cambridge, 1995.Google Scholar
19 Strogatz, S.H., Nonlinear Dynamics and Chaos, Addison-Wesley, Reading, 1994, p. 215.Google Scholar
20 Berg, S., Prellberg, T., Johannsmann, D., Rev. Sci. Instr. 74, 118 (2003).CrossRefGoogle Scholar
21 Wilhelm, M., Reinheimer, P., Ortseifer, M., Neidhofer, T., Spiess, H.W., Rheologica Acta 39, 241 (2000).CrossRefGoogle Scholar
22 Wilhelm, M., Macromolecular Materials and Engineering 287, 83 (2002).3.0.CO;2-B>CrossRefGoogle Scholar
23 Berg, S., Johannsmann, D., submitted.Google Scholar
24 Keddie, J.L., Jones, R.A.L., Cory, R.A., Europhys. Lett. 27, 59 (1995).CrossRefGoogle Scholar
25 See, for example, Kajiyama, T., Tanaka, K., Satomi, N., Takahara, A., Macromolecules 31, 5150 (1998).CrossRefGoogle Scholar
26 Young, R. J., The Physics of Glassy Polymers, ed. by Haward, R. N., 2nd ed., London, Chapman & Hall, 1997.Google Scholar