Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-26T08:07:50.345Z Has data issue: false hasContentIssue false

High Critical-Current Density Ba2YCu3O7 Thin Films Produced by Coevaporation of Y, Cu, and BaF2

Published online by Cambridge University Press:  28 February 2011

P. M. Mankiewich
Affiliation:
AT&T Bell Laboratories, Holmdel NJ 07733.
R. E. Howard
Affiliation:
AT&T Bell Laboratories, Holmdel NJ 07733.
W. J. Skocpol
Affiliation:
AT&T Bell Laboratories, Holmdel NJ 07733.
A. H. Dayem
Affiliation:
AT&T Bell Laboratories, Holmdel NJ 07733.
A. Ourmazd
Affiliation:
AT&T Bell Laboratories, Holmdel NJ 07733.
M. G. Young
Affiliation:
AT&T Bell Laboratories, Holmdel NJ 07733.
E. Good
Affiliation:
AT&T Bell Laboratories, Holmdel NJ 07733.
Get access

Abstract

High quality films of Ba2YCu3O7 have been made by coevaporation of Y, Cu, and BaF2 and subsequent annealing in oxygen. Addition of water vapor to the annealing gas at high temperatures has been found to greatly reduce the annealing time and, thus the substrate interaction. Transition temperatures (zero resistance) between 89–92 K are routinely obtained on SrTiO3 and cubic zirconia substrates. Critical current densities on SrTiO3 are as high as 106 A/cm2 at 81 K and routinely above 105 A/cm2 at 77 K. Transmission electron microscopy shows that on SrTiO3 the superconducting grains have an epitaxial orientation with respect to the substrate. Persistent current measurements in thin film rings demonstrate the absence of residual resistance in the superconducting state.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Mankiewich, P.M., Scofield, J.H., Skocpol, W.J., Howard, R.E., Dayem, A.H., Good, E. Appl. Phys. Lett., Nov 23, 1987, to appear.Google Scholar
2. Luftman, H. and White, A. E., unpublishedGoogle Scholar
3. Yan, M.F., Barns, R.L., O'Bryan, H.M. Jr, Gallagher, P.K., Sherwood, R.C., and Jin, S., Appl. Phys. Lett. 51 532, (1987).10.1063/1.98389Google Scholar
4. Barns, R.L. and Laudise, R.A., Appl. Phys. Lett. 51 1373, (1987).10.1063/1.98683Google Scholar
5. Fisanick, G.J., Mankiewich, P., Skocpol, W., Howard, R.E., Dayem, A., Fleming, R.M., White, A.E., Liou, S.H., and Moore, R., these Proceedings.Google Scholar
6. White, A.E., Short, K.T., Jacobson, D.C., Poate, J.M., Dynes, R.C., Mankiewich, P.M., Skocpol, W.J., Howard, R.E., Anzlowar, M., Baldwin, K.W., Levi, A.F.J., Kwo, J.R., Hsieh, T., and Hong, M., these Proceedings.Google Scholar
7. Augat/Pylon Co. Inc., Attleboro, MAGoogle Scholar
8. Naito, M., Hammond, R.H., Oh, B., Han, M.R., Hsu, J.W.P., Rosenthal, P., Marshall, A.F., Beasley, M.R., Geballe, T.H., and Kapitulnik, A. J. Material Res. 2 713, (1987).10.1557/JMR.1987.0713Google Scholar
9. Oh, B., Naito, M., Arnason, S., Rosenthal, P., Barton, R., Beasley, M.R., Geballe, T.H., Hammond, R.H., and Kapitulnik, A., Appl. Phys. Lett., 51, 852, (1987).10.1063/1.98834Google Scholar
10. Tozer, S.W., Kleinsasser, A.W., Penney, T., Kaiser, D., and Holtzberg, F., Phys. Rev. Lett. 59, 1768, (1987).10.1103/PhysRevLett.59.1768Google Scholar