Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-26T19:24:37.723Z Has data issue: false hasContentIssue false

High Contrast Optically Bistable Optoelectronic Switches Using Strained InGaAs/AlGaAs Material System

Published online by Cambridge University Press:  26 February 2011

R. M. Kapre
Affiliation:
Photonic Materials and Devices Laboratory, University of Southern California, Los Angeles, CA 90089–0241
Li Chen
Affiliation:
Photonic Materials and Devices Laboratory, University of Southern California, Los Angeles, CA 90089–0241
K. Kaviani
Affiliation:
Photonic Materials and Devices Laboratory, University of Southern California, Los Angeles, CA 90089–0241
Kezhong Hu
Affiliation:
Photonic Materials and Devices Laboratory, University of Southern California, Los Angeles, CA 90089–0241
Ping Chen
Affiliation:
Photonic Materials and Devices Laboratory, University of Southern California, Los Angeles, CA 90089–0241
A. Madhukar
Affiliation:
Photonic Materials and Devices Laboratory, University of Southern California, Los Angeles, CA 90089–0241
Get access

Abstract

We report the the first demonstration of optically bistable switching in monolithic opto-electronic transistor configuration using all III-V components. A strained InGaAs/GaAs asymmetric Fabry-Perot (ASFP) modulator / detector, a strained resonant tunneling diode (RTD), and a GaAs based field-effect-transistor (FET) were used in this demonstration.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES:

1. For a general review of SEEDs, see Miller, D. A. B., Opt. and Quantum Electron. 22, S61 (1990).Google Scholar
2. Law, K -K., Yan, R. H., Coldren, L. A., and Merz, J. L., Appl. Phys. Lett. 57, 1345 (1990).Google Scholar
3. Whitehead, M., Rivers, A., Parry, G., and Roberts, J. S., Electron. Lett. 26, 1589 (1990).Google Scholar
4. Pezeshki, B., Thomas, D., and Harris, J. S. Jr, Appl. Phys. Lett. 58, 813 (1991).Google Scholar
5. Chen, Li, Hu, K., Kapre, R. M., and Madhukar, A., Appl. Phys. Lett., (Jan. 17 1992 issue, in press);Google Scholar
Chen, Li, Hu, K., Kapre, R. M., Chen, W., Chen, P., and Madhukar, A., J. Vac. Sci. Technol., B (Mar./Apr. 1992 issue, in press).Google Scholar
6. Hu, K., Chen, Li, Kaviani, K., Chen, P., and Madhukar, A., to appear in IEEE Photon. Technol. Lett., (Mar. 1992 issue, in press).Google Scholar
7. Williamson, R. C., in Conference on Lasers and Electro-optics (Optical Society of America, Washington, EC, 1989), p.32.Google Scholar
8. Chen, Li, Kapre, R. M., Hu, K., and Madhukar, A., Appl. Phys. Lett. 59, 1523 (1991);Google Scholar
Kapre, R. M., Hu, K., Chen, Li, and Madhukar, A., Materials Research Society Symposium Proceedings (Materials Research Society, Pittsburgh, PA, 1991), Vol. 228 (in press).Google Scholar
9. Hu, K., Chen, Li, Madhukar, A., Chen, P., Rajkumar, K. C., Kaviani, K., Karim, Z., Kyriakakis, C., and Tanguay, A. R. Jr, Appl. Phys. Lett. 59, 1108 (1991).Google Scholar
10. Hu, K., Chen, Li, Madhukar, A., Chen, P., Kyriakakis, C., Karim, Z., and Tanguay, A. R. Jr, Appl. Phys. Lett. 59, 1664 (1991).CrossRefGoogle Scholar
11. For example, see Chandhi, S. K., VLSI Fabrication Principles. Wiley, New York, 1983.Google Scholar
12. Whitehead, M., Rivers, A., Parry, G., Roberts, J. S., and Button, C., Electron‥ Lett. 25, 984 (1989).Google Scholar
13. Yan, R. H., Simes, R. J., and Coldren, L. A., IEEE Photon. Technol. Lett. 2, 118 (1990).Google Scholar