Skip to main content Accessibility help
×
Home

High Concentration Erbium Implantation of Epitaxially Grown Caf2 /Si Structures.

  • S. Raoux (a1) (a2), A. S. Barriere (a3), H. J. Lozykowski (a4) and I. G. Brown (a1)

Abstract

Calcium fluoride thin films grown on silicon substrates by sublimation under ultra high vacuum are well known to be highly efficient hosts for rare earth luminescence properties. For this reason we incorporate erbium by ion implantation in order to form optoelectronic integrated devices. Here we describe the incorporation conditions of erbium in CaF2/Si structures and their luminescence characteristics. The properties of the material have been investigated for implantation doses varying from 4×1014 to 1×1017 at.cm−2. The role of oxygen in the charge compensation mechanisms is investigated and it is shown that the maximum emission in erbium at 1.53μm occurs for an implanted dose of 2×1016 at.cm−2. This corresponds to an Er concentration three orders of magnitude greater than for the case of classical-erbium-doped semiconductors. At this high concentration (up to 15 at.%) the light emission mechanisms are of great theoretical interest. They involve strong Er-Er coupling effects: energy transfer, cross-relaxation phenomena and high conversion efficiencies.

These properties make erbium-implanted CaF2/Si structures excellent candidates for the production of optically active waveguides. The guiding structure can be formed by high energy implantation to build a buried active region of high refractive index within the CaF2 thin film.

Copyright

References

Hide All
1. Rare Earth doped semiconductors. edited by Pomrenke, G. S., Klein, P. B. and Langer, D. W.. (Mater. Res. Soc. Proc., Vol. 301, 1993).
2. Future pspects for active fibre devices. edited by Millar, C.A.. (Proc ECOC'90, Amsterdam, the Netherlands, 1990).
3. Federighi, M., Massarek, I., Trwoga, P. F., Electr. Lett., Vol.30 No 11, 1277–82, (1994).
4. Oguma, M., Kitagawa, T., Hattori, K., Horiguchi, M.. IEEE Phot. Tech. Lett., Vol 6, No 5, 1041 (1994).10.1109/68.285549
5. Integrated optics: devices and applications, edited by Boyd, J.T.. (IEEE, New York, NY, 1990)
6. Lumholt, O., Rasmussen, T., Bjarklev, A.. Electr. Lett. Vol 29, No 5, 495, (1993).10.1049/el:19930331
7. Hattori, K., Kitagawa, T., Oguma, M., Ohmori, Y., Horigushi, M.. Electr. Lett. Vol 30, No 11,856 (1994)
8. Van den Hoven, G. N., Snoeks, E., Polman, A., van Uffelen, J. W. M., Oei, Y. S., Smit, M. K., Appl. Phys. Lett., 62, 24, 3065, (1993).10.1063/1.109136
9. Lalrier, E., Pocholle, J. P., Papuchon, M., He, Q., De Micheli, M., Ostrowsky, D. B., Grezes-Breset, C., Pelletier, E., Electr. Lett., Vol 28, No 15,1428, (1992).
10. Lui, M., MacFarlane, R. A., Yap, D. and Lederman, D., Electr. Lett., 29, 2, 172, (1993).10.1049/el:19930116
11. Damn, E., Legros, R., Munozyague, A., Fontaine, C., J. Appl. Phys., 75, 6,2749, (1994)
12. Banié, A.S., Raoux, S., Garcia, A., L'Haridon, H., Moutonnet, D. and Lambert, B., J. Appl. Phys.,75, 2, 1133, (1994).
13. Favennec, P.N., L'Haridon, H., Moutonnet, D., Barriere, A.S., Raoux, S. and Mombelli, B., European Patent Office, N.0543725A 1. (Nov. 18, 1992).
14. Raoux, S., Ph. D. Thesis, University of Bordeaux I, N° 1029, (1993). France.
15. Brown, I.G., Dickinson, M.R., Galvin, J.E., Godechot, X. and MacGill, R.A., Nucl. Inst. Meth. in Phys. Res. B55,506510, (1991).10.1016/0168-583X(91)96221-6
16. Perez, A., Nucl. Inst. Meth. in Phys. Res. B1, 621627, (1984).10.1016/0168-583X(84)90134-4
17. Christel, L.A. and Gibbons, J.F., J. Appl. Phys. 52(8), 5050 (1981)10.1063/1.329448
18. Lu, F., Gunapala, S., Croft, M., Stofel, N.G., Boer, M.L. den, J. Appl. Phys. 63(8), 3692, (1988).10.1063/1.340688
19. Sobolev, B. P, Fedorov, P.P., J. Less. Com. Metals, 60,3346, (1978)10.1016/0022-5088(78)90087-5
20. Reau, J.M., Wahbi, M., Senegas, J., Hagenmuller, P., Phys. stat. sol. (b) 169, 331, (1992).10.1002/pssb.2221690206
21. Buchal, Ch. and Mohr, S.,.in Physical Concepts of Materials for Novel Optoelectronic Device Applications I. SPIE, Vol.136 1, (1990).
22. Rochaix, C., Rolland, A., Favennec, P.N., Lambert, B., Corre, A. Le, L'Haridon, H. and Salvi, M., Jap. J. of Appl. Phys. 27, 12, L2348–50 (1988).
23. Lhomer, C., Lambert, B., Toudic, Y., Corre, A. Le, Gauneau, M., Semic. Sci. Technol. 6, 916923, (1991).10.1088/0268-1242/6/9/014
24. Lozykowski, H.J., Alshawa, A.K. and Brown, I., J. Appl. Phys. 76 (8), 4836, (1994).
25. Baniere, A.S., Cesaire, T., Hirsch, L, Lambert, B. and Raoux., S., Part I, J. Appl. Phys., 77,10,15 May (1995).
26. Barriere, A.S., Kim, B. Y., Mombelli, B., Porie, B. and Raoux, S., Part II J. Appl. Phys., 77,10,15 May (1995).
27. Miller, M.P., Wright, J.C., J. Chem. Phys. 71(1), 324338 (1979).10.1063/1.438074
28. Riseberg, L.A., Weber, M.J., Progress in optics, Vol XIV edit. E. Wolf-Noth-Holland, Amsterdam, (1976).
29. Wright, J.C., in Topics in Applied Physics, edited by Fong, F.K., Springer, New York, vol.15,239, (1976)
30. Auzel, F., Proc. IEEE 61,758, (1973).

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed