Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-19T19:30:07.941Z Has data issue: false hasContentIssue false

High 2Deg Mobility and Fabrication of High Performance AiGaAs/GaAs Selectively Doped Heterostructure Transistors and Ring Oscillators on Si Substrates

Published online by Cambridge University Press:  28 February 2011

Naresh Chand
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974
F. Ren
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974
J. P. Van Der Ziel
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974
Y. K. Chen
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974
Get access

Abstract

We report growth by MBE and fabrication of state-of-the-art AlGaAs/GaAs selectively doped heterostructure transistors (SDHT's) and ring oscillators on Si substrates. In MBE growth, use of minimum As4/Ga flux ratio during initial nucleation combined with in-situ thermal cycles gave a marked improvement in material quality. Although undoped GaAs buffer layers were highly resistive and were fully depleted under a Schottky contact, a parallel n-type conduction path confined in a thin region (<0.1 pm) near the GaAs/Si interface was sometimes observed whose sheet density (1012 - 1013 cm−2) and mobility (600-900 cm2V−1 s−1) were independent of temperature between 77K and 300K. This parallel conduction did not affect the dc behavior and switching speed of SDHT's, and it was successfully prevented by doping the GaAs with Be near the interface. For a 2DEG sheet density of 1012 cm−2, a mobility as high as 53,500 cm2V−1s−1 at 77K was obtained, as against a mobility of ∼70,000 cm2 V−1 s−1 for a similar structure on GaAs substrates. For 1 μm-gate-length devices, maximum transconductances of 220 and 365 mS/mm were measured at 300K and 77K, respectively. A minimum propagation delay time, Td, of 28 ps/stage was measured at 300K for direct coupled FET logic (DCFL) ring oscillators for 1.1 mW/stage power dissipation. rd reduced to 17.6 ps/stage at 77K. From microwave S-parameter measurements at 300K, current gain and power gain cutoff frequencies of 15 GHz and 18 GHz, respectively, were measured. These results are comparable to the SDHT technology on GaAs substrates.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Cho, A. Y., in Proceedings of the International Electron Device Meeting 1987, Washington, D.C. (IEEE, Piscataway, N.J. 1987), p. 91.Google Scholar
[2] Shaw, D. W., in Heteroepitaxy on Si II, Fan, J. C. C., Phillips, J. M., and Tsaur, B-Y., eds. (Mater Res. Soc. Symp. Proc. 91, Pittsburg, 1987), p. 15.Google Scholar
[3] Shichijo, H., Tran, L. T., Matyi, R. J., and Lee, J. W., in Heteroepitaxy on Si II, Fan, J. C. C., Phillips, J. M., and Tsaur, B-Y., eds. (Mater. Res. Soc. Symp. Proc. 91, Pittsburg, 1987), p. 201.Google Scholar
[4] Eron, M., Taylor, G., Menna, R., Narayan, S. Y., and Klatskin, J., IEEE Electron Device Lett. EDL–8, 350 (1987).Google Scholar
[5] Fischer, R., Chand, N., Kopp, W., Peng, C. K., Morkoc, H., Gleason, K. R. and Scheitlin, D., IEEE Trans. Electron Devices, ED–33, 206 (1986).Google Scholar
[6] Shichijo, H., Matyi, R. J., and Taddiken, A. H., IEEE Electron Device Lett. 9, 444 (1988).Google Scholar
[7] Aksun, M. I., Morkoc, H., Lester, L. F., Duh, K. H. G., Smith, P. M., Chao, P. C., Longerbone, M., and Erickson, L. P., Appl. Phys. Lett. 49, 1654 (1986).Google Scholar
[8] Chand, N., Ren, F., Pearton, S. J., Shah, N. J. and Cho, A. Y., IEEE Electron Dev. Lett. EDL–8, 185 (1987).Google Scholar
[9] Ren, F., Chand, N., Garbinski, P., Pearton, S. J., Wu, C. S., Urbanek, L. D., Fullowan, T., Shah, N. and Feuer, M. D., Electron. Lett. 24, 1037 (1988).Google Scholar
[10] Wilson, M. R., Shen, Y. D., Welch, B. M., Lee, J. W., McCullough, R. E., Salerno, J. P., and Fan, J. C. C., GaAs IC Symposium Technical Digest, p. 243, 1988.Google Scholar
[11] Fischer, R., Hendersen, T., Klein, J., Kopp, W., Peng, C. K., Morkoc, H., Detry, J. and Blackstone, S. C., Appl. Phys. Lett. 47, 983 (1985).Google Scholar
[12] Choi, H. K., Turner, G. W., Windhorn, T. H. and Tsaur, B-Y., IEEE Electron Device Lett., EDL–7, 500 (1986).Google Scholar
[13] Fischer, R., Chand, N., Kopp, W., Morkoc, H., Erickson, L. P., and Youngman, R., Appl. Phys. Lett. 47, 397 (1985).Google Scholar
[14] Tran, L. T., Lee, J. W., Shichijo, H., and Yuan, H.-T., IEEE Trans. Electron Device Lett. EDL–8, 50 (1987).Google Scholar
[15] Ma, T., Ueda, D., Lee, W.-S., Adkisson, J., and Harris, J. S. Jr, IEEE Electron Device Lett. EDL–19, 657 (1988).Google Scholar
[16] Fischer, R., Kopp, W., Gedymin, J. S. and Morkoc, H., IEEE Trans. Electron Dev. ED–33, 1407 (1986).Google Scholar
[17] Noge, H., Kano, H., Hashimoto, M., and Igarash, I., in Heteroepitaxy on Si: Fundamentals, Structure and Devices, Choi, H. K., Hull, R., Ishiwara, H. and Nemanich, R. J. eds. (Mat. Res. Soc. Symp. Proc. 116, Pittsburg, 1988), p. 199.Google Scholar
[18] Morkoc, H., in The Technology and Physics of MBE, Parker, E. H. C., ed. (Plenum Press, New York, 1985), p. 185.Google Scholar
[19] Chand, N., Ziel, J. P. van der, Weiner, J. S., Sergent, A. M. and Lang, D. V., To be published in Advances in Materials, Processing and Devices in III-V compound semiconductors, Sadana, D. K., Eastman, L., and Dupuis, R., eds. (Mat. Res. Soc. Symp. Proc. Pittsburg, 1989).Google Scholar
[20] Ohbu, I., Ishino, M., and Nakatani, M., J. Appl. Phys. 64, 3295 (1988).Google Scholar
[21] Kroemer, H., in Heteroepitaxy on Si, Fan, J. C. C. and Poate, J. M., eds. (Mater. Res. Soc. Symp. Proc. 67, Pittsburg, 1986), p. 3.Google Scholar
[22] Baraff, G. A., Lannoo, M., and Schliiter, M., Phys. Rev. B 38, 6003 (1988); G. A. Baraff and M. Schliiter, Phys. Rev. 1335, 6154 (1987).Google Scholar
[23] Meyer, B. K., Hoffman, D. M., Niklas, J. R., and Spaeth, J.-M., Phys. Rev. B36, 1332 (1986).Google Scholar
[24] Nishioka, T., Itoh, Y., Yamamoto, A., and Yamagichi, M., J. Appl. Phys. 64, 1266 (1988).Google Scholar
[25] Ziel, J. P. van der, Chand, N., and Weiner, J. S., these proceedings.Google Scholar
[26] Stolz, W., Guimaraes, F. E. G., and Ploog, K., J. Appl. Phys. 63, 492 (1988).Google Scholar
[27] Mihara, M., Mannoh, M., Shinozaki, K., Naritsuka, S. and Ishii, M., Jpn. J. Appl. Phys. 25, L611 (1986), and references therein.Google Scholar