Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-26T13:09:45.944Z Has data issue: false hasContentIssue false

Hierarchical Assembly of 2D Nanostructures of Relevance for Organic Solar Cell Design

Published online by Cambridge University Press:  01 February 2011

Sarah O'Donnell
Affiliation:
sodonnell@mitre.org, The Mitre Corporation, McLean, VA, 22102, United States
Michael Buettner
Affiliation:
mb2sw@virginia.edu, University of Virginia, Charlottesville, VA, 22904, United States
Petra Reinke
Affiliation:
pr6e@virginia.edu, University of Virginia, Department of Materials Science and Engineering, 385 Mc Cormick Road, Charlottesville, VA, 22904, United States
Get access

Abstract

The first step in synthesizing a model film morphology via a surface-driven hierarchical assembly process is presented. The goal of the hierarchical assembly is the control of the morphology of complex molecular layers for the investigation of fundamental processes in organic solar cells. Using a focused ion beam (FIB) with Ga+ ions at 30 keV, the surface of highly oriented pyrolitic graphite (HOPG) is patterned with an array of local amorphous carbon ellipsoid spots (ACES), which provide preferential nucleation lines at their perimeter, and thus are instrumental in the control of fullerene island growth. On the undamaged surface regions outside the ACES pattern the fullerene island growth is unperturbed, and presents the well-known combination of round and fractal island shapes. The fullerene deposition at the periphery of the ACES pattern, which is characterized by single ion impact defects, results in stunted, smaller and irregular islands. Inside the ACES array, the C60 island growth is controlled by the shape of the ACES and is constrained to lobes which form around each ACES spot. The array and C60 lobe morphology and geometry are characterized and a subsequent understanding of the C60 diffusion fields and nucleation lines within the array is discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Brabec, C. J., Sariciftci, N. S., and Hummelen, J. C., Adv. Funct. Mater. 11, 15 (2001).10.1002/1616-3028(200102)11:1<15::AID-ADFM15>3.0.CO;2-A3.0.CO;2-A>Google Scholar
2. Nelson, J. Current Opinion in Solid State and Materials Science 6, 87 (2002).Google Scholar
3. Peumans, P. Uchida, S. and Forrest, S. R., Nature 425, 158 (2003).Google Scholar
4. Dennler, G. and Sacriciftci, N. S., Proc. of the IEEE 93, 1429 (2005).10.1109/JPROC.2005.851491Google Scholar
5. Oteyza, D. G. d., Krauss, T. N., Barrena, E. Dosch, H. and Osso, J. O., Appl. Phys. Lett. 90, 243104 (2007).10.1063/1.2748211Google Scholar
6. Yang, F. Shtein, M. and Forrest, S. R., Nature Materials 4, 37 (2005).10.1038/nmat1285Google Scholar
7. Guldi, D. M., Chem. Soc. Rev. 31, 22 (2002).10.1039/b106962bGoogle Scholar
8. Imahori, H. Fujimoto, A. Kang, S. Hotta, H. Yoshida, K. Umeyama, T. Matano, Y. and Isoda, S. Adv. Mater. 17, 1727 (2005).Google Scholar
9. Imahori, H. and Fukuzumi, S., Adv. Funct. Mater. 14, 525 (2004).10.1002/adfm.200305172Google Scholar
10. Gierak, J. Mailly, D. Hawkes, P. Jede, R. Bruchhaus, L. Bardotti, L. Prevel, B. Melinin, P. Perez, A. Hyndman, R. Jamet, J.-P., Ferre, J. Mougin, A. Chappert, C. Mathet, V. Warin, P. Chapman, J. Appl. Phys. A 80, 197 (2005).10.1007/s00339-004-2551-zGoogle Scholar
11. Kocabas, C. Hur, S.-H., Gaur, A. Meitl, M. A., Shim, M. and Rogers, J. A., Small 1, 1110 (2005).10.1002/smll.200500120Google Scholar
12. Liu, H. and Reinke, P. Surface Science 601, 3149 (2007).Google Scholar
13. Gravil, P.A., Devel, M. Lambin, Ph., Bouju, X. Girard, Ch., Lucas, A. A., Phys. Rev. B 53, 16221629 (1996).10.1103/PhysRevB.53.1622Google Scholar