Skip to main content Accessibility help
×
Home

Heteroepitaxy on (001) Silicon: Growth Mechanisms and Defect Formation.

  • P. Pirouz (a1), F. Ernst (a1) and T. T. Cheng (a1)

Abstract

In the growth of thin films of compound semiconductors on (001) silicon substrates by vapor deposition techniques, it is usual to employ a two-step process. In this method, an initial (buffer) layer is first grown at a relatively low temperature; once a continuous film has formed on the substrate, its temperature is raised for the subsequent bulk growth. Carrying out the growth in a one-step process by heating the substrate to the final temperature before allowing the gases into the CVD reactor usually results in a polycrystalline aggregate. In this paper, classical nucleation and growth mechanisms are used to explain-the reasons for the different morphology of the one-step and two-step growth films.

The heteroepitaxial films on (001) silicon often contain a high density of stacking faults and twins. The occurrence of these planar defects is usually attributed to stresses that arise from lattice mismatch and/or thermal mismatch (differences in coefficients of thermal expansion) between the substrate and the epilayer. It is argued that, in fact, mismatch stresses play a minor role in the generation of planar defects. Instead, an alternative mechanism for their formation is proposed which is based on the facetted shape of nuclei and errors in stacking of {111} planes which occur during deposition on the facets.

Conventional and high resolution transmission electron microscopy have been used to investigate three systems grown by CVD or MOCVD: SiC/Si, GaAs/Si and GaP/Si. These systems have different lattice and thermal mismatches, and the results support the proposed model for the formation of defects.

Copyright

References

Hide All
[1] Olson, J. M., Al-Jassim, M. M., Kibbler, A., and Jones, K. M., J. Crystal Growth, 77, 515 (1986).
[2] Akiyama, M., Kawarada, Y., and Kaminishi, K., J. Crystal Growth 68, 21 (1984).
[3] Nishino, S., Powell, J. A., and Will, H. A., Appl. Phys. Lett. 42, 460 (1983).
[4] Christian, J. W., “The Theory of Transformations in Metals and Alloys”, 2nd. Edition, Pergamon Press, pp. 418475, (1981).
[5] Powell, J. A., Matus, L. G., and Kuczmarski, M. A., J. Electrochem. Soc. 134, 1558 (1987).
[6] Chorey, C. M., Pirouz, P., Powell, J. A., and Mitchell, T. E., in ‘Semiconductor-Based Heterostructures: Interfacial Structure and Stability’, Ed. Green, M. L. et al., TMS Publications (1987), p. 115.
[7] Chorey, C. M., M.Sc. Thesis, Case Western Reserve University, 1987.
[8] Maeda, K., Suzuki, K., Fujita, S., Ichihara, M., and Hyodo, S., Submitted to Phil. Mag.
[9] Gottschalk, H., Patzer, G., and Alexander, H., Phys. Stat. Sol. (a) 45, 207 (1978).
[10] , Ernst and , Pirouz, unpublished.
[11] Al-Jassim, M. M., Olson, J. M., and Jones, K. M., Mat. Res. Soc. Symp. Proc. 62, 49 (1986).
[12] fegelsen, D. K., Ponce, F. A., Smith, A. J., and Tramontana, J. C., J. Appl. Phys. 61, 1856 (1987).
[13] Hull, R. and Fischer-Colbie, K., Appl. Phys. Lett. 50, 851 (1987).
[141 Bauer, E., Z. Kristallogr. 110, 372 (1958).
[15] Burton, W. K., Cabrera, N., ana Frank, F. C. Phil. Trans. R. Soc. Lond. A243, 299 (1951).
[16] Markov, I. and Stoyanov, S., Contemp. Phys. 28, 267 (1987).
[17] Cheng, T. T., Pirouz, P., and Powell, J. A., iipublished.
[18] Ernst, F. and Pirouz, P., Submitted to J. Appl. Phys. (1988).
[19] Müller, H. J., J. Physique 43, CI133 (1982).
[20] Pirouz, P., Chorey, C. M., Cheng, T. T., and Powell, J. A., Mat. Res. Soc. Symp. Proc. 91, 399 (1987).
[21] Pirouz, P., Chorey, C. M., Cheng, T. T., and Powell, J. A., Inst. Phys. Conf. Ser. No. 87, 175 (1987).
[22] Bootsma, G. A., Knippenberg, W.-F., and Verspui, G., J. Crystal Growth 11, 297 (1971).
[23] Neave, J. H., Larsen, P. K., Joyce, B. A., Gowers, J. P., and Veen, J. F. van der, J. Vac. Sci. Technol. B 1, 668 (1983).
[24] Pirouz, P., Chorey, C. M., and Powell, J. A., Appl. Phys. Lett. 50, 221 (1987).
[25] Booker, G. R. and Stickler, R., J. Appl. Phys. 33, 3281 (1962).
[26] Booker, G. R. and Stickler, R., Appl. Phys. Lett. 3, 158 (1963).
[27] Cullis, A. G. and Booker, G. R., J. Crystal Growth 9, 132 (1971).
[28] Joyce, B. A., Neave, J. H., and Watts, B. E., Surface Sci. 15, 1, (1969).
[29] Abbink, H. C., Broudy, R. M., and McCarthy, G. P., J. Appl. Phys. 39, 4673 (1968).
[30] Jona, F., Appl. Phys. Lett. 9, 235 (1966).
[31] Kasper, E., Herzog, H. J., and Kibbel, H., Appl. Phys. 8, 199 (1975).
[32] Akiyama, M., Kawarada, Y., Ueda, T., Nishi, S., and Kaminishi, K., J. Crystal Growth 77, 490 (1986).

Heteroepitaxy on (001) Silicon: Growth Mechanisms and Defect Formation.

  • P. Pirouz (a1), F. Ernst (a1) and T. T. Cheng (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed