Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-26T04:04:08.262Z Has data issue: false hasContentIssue false

Heteroaromatics: Exceptional Materials for Second Order Nonlinear Optical Applications

Published online by Cambridge University Press:  25 February 2011

Alex K-Y. Jen
Affiliation:
Eni Chem America Inc., Research and Development Center, 2000 Cornwall Road, Monmouth Junction, New Jersey 08852
K. Y. Wong
Affiliation:
Eni Chem America Inc., Research and Development Center, 2000 Cornwall Road, Monmouth Junction, New Jersey 08852
V. Pushkara Rao
Affiliation:
Eni Chem America Inc., Research and Development Center, 2000 Cornwall Road, Monmouth Junction, New Jersey 08852
K. Drost
Affiliation:
Eni Chem America Inc., Research and Development Center, 2000 Cornwall Road, Monmouth Junction, New Jersey 08852
R. M. Mininni
Affiliation:
Eni Chem America Inc., Research and Development Center, 2000 Cornwall Road, Monmouth Junction, New Jersey 08852
Get access

Abstract

New classes of nonlinear optical molecules were synthesized and characterized. It is shown experimentally that molecules with heteroaromatic π-electron systems exhibit exceptional second order nonlinear optical response and good solubility. Measurement of the nonlinear optical properties of molecules containing heteroaromatic moieties with different length scale reveals a power law dependence of Bμ on the number of π-electrons. Also, the effects of two nitro groups as electron acceptors on the aromatic ring are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1) See, for example, Nonlinear optical properties of organic molecules and crystals, Vol. 1 and 2, Chemia, D. and Zyss, J., ed., Academic Press, Florida, 1986.Google Scholar
2) Lipscomb, G. F., Lytel, R. S., Ticknor, A. J., Van Eck, T. E., Kwiatkowski, S. L. and Girton, D. G., SPIE proc. 1337, 23 (1990).Google Scholar
3) Garito, A. F., Wong, K. Y. and Zamani-Khamiri, O., in Nonlinear Optical and Electroactive Polymers, ed. Ulrich, D. and Prasad, P., Plenum Press, New York, 1987.Google Scholar
4) Pushkara Rao, V., Wong, K. Y., Chen, W. and Jen, Alex K-Y., submitted for U. S. patent application, to be disclosed.Google Scholar
5) Singer, K. D. and Garito, A. F., J. Chem. Phys. 75, 3572(1981).Google Scholar
6) Teng, C. C. and Garito, A. F., Phy. Rev. B28, 6766 (1983).Google Scholar
7) Singer, K. D., Sohn, J. E., King, L. A., Gordon, H. M., Katz, H. E. and Dirk, C. W., J. Opt. Soc. Am. B6 1339 (1989).Google Scholar
8) Huijts, R. A. and Hesselink, G. L. J., Chem. Phys. Lett. 156, 209(1989).Google Scholar
9) Bottcher, C. J. F., Theory of electric polarization, Vol. 1 (Elsevier, Amsterdam, 1973).Google Scholar
10) Chang, L. T., Tam, W., Meredith, G. R., Rikken, G. and Meijer, E. W., SPIE proc. 1147, 61(1989).Google Scholar
11) Heflin, J. R., Wong, K. Y., Zamani-Khamiri, O. and Garito, A. F., Phys. Rev. B38, 1573(1988).Google Scholar
12) Zyss, J., J. Mol. Elec. 1, 2(1985);Google Scholar
Li, D., Ratner, M. A. and Marks, T. J., J. Am. Chem. Soc. 110, 1707(1988).Google Scholar