Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-07-02T06:37:20.078Z Has data issue: false hasContentIssue false

Hard High Density Carbon Thin Films for X-Ray Multilayer Optics

Published online by Cambridge University Press:  22 February 2011

Joseph Pedulla
Affiliation:
J. Pedulla & Associates, Columbia, MD 21044
Axel Bartos
Affiliation:
Quantum Metrology Division, National Institute of Standards and Technology, Gaithersburg, MD 20899
Richard D. Deslattes
Affiliation:
Quantum Metrology Division, National Institute of Standards and Technology, Gaithersburg, MD 20899
Get access

Abstract

Dual ion beam assisted deposition (DIBAD) techniques are known to produce high quality diamond-like carbon films. The reported extreme hardness and high thermal conductivity characteristics of these films have stimulated our investigation of their use as one component of multilayer x-ray optical elements. Non-crystalline carbon films were produced and were characterized by means of highly collimated x-ray refiectometry (λ = 0.154 nn), atomic force microscopy, and IR Raman spectroscopy techniques. They exhibit extreme smoothness at the surface and interface, near diamond density, high hardness, and high uniformity over areas of 0.58 x 10-4 m2. Multilayers have been constructed of this non-crystalline carbon interposed with high electron density materials that have exhibited very good x-ray and EUV optical characteristics at λ = 0.154 nm and at λ = 4.0 – 8.0 nm.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Barbee, T. W. and Keith, D. L., in Low Energy X-Ray Diagnostics in 1981, ed. by Attwood, D. T. and Henke, B. L. (AIP Conf. Proc. No. 75, AIP, New York, 1981), p. 131.Google Scholar
2. Spiller, E., in Low Energy X-Ray Diagnostics in 1981, ed. by Attwood, D. T. and Henke, B. L. (AIP Conf. Proc. No. 75, AIP, New York, 1981), p. 124.Google Scholar
3. Spiller, E., Wilczynski, J., Steams, D., Golub, L., and Nystrom, G., Appl. Phys. Lett. 61, 1481 (1992).Google Scholar
4. Spiller, E., SPIE, 1160, 271 (1989).Google Scholar
5. Puik, E. J., Ven, S. W. M. van de, Wolfis, W. J. J., Dorssen, G. E. van, and Wiel, M. J. van der, in Multilayer Optics for Advanced X-ray Applications, Ceglio, Natale, Editor, Proc. SPIE 1547, 221 (1991).Google Scholar
6. Robertson, J., Surf. Coat. Technol. 50, 185 (1992).Google Scholar
7. Tsai, H. C. and Bogy, D. B., J. Vac. Sci. Technol. A 5, 3287 (1987).Google Scholar
8. Aisenberg, S. and Chabot, R., J. Appl. Phys. 42, 2953 (1971).Google Scholar
9. Jacob, W. and Mueller, W., Appl. Phys. Lett. 63, 1771 (1993).Google Scholar
10. Wang, C. Z. and Ho, K. M., Phys. Rev. Lett. 71(8), 1184 (1993).Google Scholar
11. Frauenheim, Th., Blaudeck, P., Stephan, U., and Jungnickel, G., Phys. Rev. B 48, 4823 (1993).Google Scholar
12. Pappas, D. L., Saenger, K. L., Bruby, J., Krakow, W., and Cuomo, J. J., J. Appl. Phys. 71, 5675 (1992).Google Scholar
13. Berger, S. D., McKenzie, D.R., and Martin, P.J., Philos. Mag. Lett. 57,285 (1988).Google Scholar
14. Watts, R. N., Tarrio, C., Lucatorto, T. B., Madden, R. P., Deslattes, R. D., Caticha, A., Estler, W. T., Evans, C. J., McWaid, T., Fu, J., and Vorburger, T. V., Nucl. Instrum. Methods B, 79, 244(1993).Google Scholar
15. Pedulla, J., Bartos, A., and Desslattes, R. D., in Physics of X-rayMultilayer Structures 1994, Technical Digest Series, Vol. 6 (Optical Society of America, Washington, DC, 1994) p 31.Google Scholar
16. Caticha, A., Phys. Rev. B, 49, 33 (1994).Google Scholar
17. Steams, D. G., J. Appl. Phys. 71, 4286 (1992).Google Scholar
18. Sinha, S. K., Sirota, E. B., Garoff, S., and Stanley, H. B., Phys. Rev. B, 38, 2297 (1988).Google Scholar
19. Freund, A. K., ESRF Newsletter 19, 11 (1993).Google Scholar