Hostname: page-component-77c89778f8-gq7q9 Total loading time: 0 Render date: 2024-07-18T09:20:11.832Z Has data issue: false hasContentIssue false

Hall-Petch Relationship in Nano-RuAl Prepared by Mechanical Alloying

Published online by Cambridge University Press:  21 March 2011

K. W. Liu
Affiliation:
Department of Materials Science, Functional Materials, Geb.22;
F. Mücklich
Affiliation:
Department of Materials Science, Functional Materials, Geb.22;
R. Birringer
Affiliation:
Department of Physics, Geb.43, P.Box 151150, D-66041 Saarbrücken, GermanySaarland University
Get access

Abstract

A transition from a normal Hall-Petch relationship to an abnormal one is observed at a grain size of approximately 18.5 nm for nano-RuAl. Several models each representing a controlling factor have been employed to rationalize the transition mechanism. The grain sizes corresponding to the dislocation pile-ups lower bound [2] in grain interior are much smaller than the observed transition grain size and no apparent transition grain size has been derived from the grain size dependence of unit cell volume change [5]. While the grain sizes corresponding to the transition of strain rate according to Coble creep [1] and to the significant triple junction volume fraction [3, 4] (1 %) are well consistent with the observed transition grain size. The overall results indicate that the transition of H-P relationship is dominated by the weakening effect of grain boundaries and triple junctions.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Chokshi, A. H., Rosen, A., Karch, J. and Gleiter, H.,, 1989, Scripta Mater., 23, 1679 Google Scholar
2. Nieh, T. G. and Wadsworth, J.,, Scripta Mater. 25, 955 (1991).Google Scholar
3. Suryanarayana, C., Mukhopadhyay, D., Patankar, S. N., and Froes, F. H., J. Mater.Res., 7, 2114 (1992).Google Scholar
4. Palumbo, G., Thorpe, S. J. and Aust, K. T., Scripta Mater. 24, 1347 (1990).Google Scholar
5. Lu, K., Wie, W. D. and Wang, J. T., Scripta Metall. Mater., 24, 2319(1990).Google Scholar
6. Schio lc tz, J., Vegge, T., Di Tolla, F. D. and Jacobsen, K. W., Phys. Rev. B, 60, 11971 (1999).Google Scholar
7. Liu, K. W., Mücklich, F. and Birringer, R., Intermetallics, 9, 8188 (2001).Google Scholar
8. Fleischer, R. L., Field, R. D. and Briant, C. L., Metall. Trans., 22A, 403 (1991).Google Scholar
9. Fleischer, R. L., Acta Metall. Mater., 41, 863 (1993).Google Scholar
10. Conrad, H. and Narayan, J., Scripta Mater., 42, 1025 (2000).Google Scholar
11. Palumo, G., Erb, U. and Aust, K. T., Scripta Metall. Mater., 24, 2347 (1990).Google Scholar
12. Rabukhin, V. B., Phys. Met. Metallogr., 61, 149 (1986).Google Scholar
13. Weissmüller, J., Löffler, J., and Kleber, M., Nanostructured Mater., 6, 105 (1995).Google Scholar
14. Höfler, H. J., 1991, Ph.D Thesis, Universität des Saarlandes, Saarbrücken, Germany.Google Scholar
15. Van Swygenhoven, H. and Caro, A., Phys. Rev. B, 58, 11246 (1998).Google Scholar
16. Wang, N., Wang, Z., Aust, K. T. and Erb, U., Acta Metall. Mater., 43, 519 (1995).Google Scholar