Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-06-19T09:52:59.076Z Has data issue: false hasContentIssue false

Halide Ion Effect in Shape Transformation from Silver Triangular Nanoprisms to Silver Nanodisks

Published online by Cambridge University Press:  31 January 2012

Israel A. López
Affiliation:
Laboratorio de Materiales I, Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, 66475, San Nicolás de los Garza, Nuevo León, México
Idalia Gómez
Affiliation:
Laboratorio de Materiales I, Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, 66475, San Nicolás de los Garza, Nuevo León, México
Get access

Abstract

Silver triangular nanoprisms (TNP’s) were transformed into silver nanodisks (NDK’s) by addition of halide ion solution (chloride, bromide and iodide). The shape transformation of the TNP’s is due to the selective etching effect of halide ions at their vertices. TNP’s were synthesized via a photoinduced growth process, and then different concentrations of potassium halide solutions were added into the TNP’s colloids under vigorous stirring. Images of the obtained nanoparticles were recorded by scanning electron microscopy (SEM). The shifts of the in-plane dipole plasmon resonance band allow us to identify the differences among the three halides. These differences might be due to the distinct sizes of halides, and the solubility product constant values of each silver halide. We found that the etching ability of the halides, at a concentration of 1.0 mM, to truncate the vertices of TNP’s is in the order of Br- > Cl- > I-. In contrast, at a concentration of 0.01 mM, the order of the etching ability is Br- > I- > Cl-.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Cao, Y.W., Jin, R.C. and Mirkin, C.A., Science 297, 1536 (2002).Google Scholar
2. Salzemann, C., Lisiecki, I., Brioude, A., Urban, J. and Pileni, M.P., J. Phys. Chem. B 108, 13242 (2004).Google Scholar
3. Wiley, B., Im, S.H., Li, Z.Y., McLellan, J.M., Siekkinen, A. and Xia, Y., J. Phys. Chem. B 110, 15666 (2006).Google Scholar
4. Sherry, L.J., Jin, R., Mirkin, C.A., Schatz, G.C. and Van Duyne, R.P., Nano Lett. 6, 2060 (2006).Google Scholar
5. Zheng, X., Guo, D., Shao, Y., Jia, S., Xu, S., Zhao, B., Xu, W., Corredor, C. and Lombardi, J.R., Langmuir 24, 4394 (2008).Google Scholar
6. Zhao, J., Zhang, X., Youzon, C.R., Haes, A.J. and Van Duyne, R.P., Nanomedicine 1, 219 (2006).Google Scholar
7. Sanders, A.W., Routenberg, D.A., Wiley, B.J., Xia, Y., Dufresne, E.R. and Reed, M.A., Nano Lett. 6, 1822 (2006).Google Scholar
8. Tao, A., Sinsermsuksakul, P. and Yang, P., Nat. Nanotechnol. 2, 435 (2007).Google Scholar
9. Tang, B., An, J., Zheng, X., Xu, S., Li, D., Zhou, J., Zhao, B. and Xu, W., J. Phys. Chem. C 112, 18361 (2008).Google Scholar
10. Chen, Y., Wang, C., Ma, Z. and Su, Z., Nanotechnology 18, 325602 (2007).Google Scholar
11. Roh, J., Yi, J. and Kim, Y., Langmuir 26, 11621 (2010).Google Scholar
12. An, J., Tang, B., Zheng, X., Zhou, J., Dong, F., Xu, S., Wang, Y., Zhao, B. and Xu, W., J. Phys. Chem. C 112, 15176 (2008).Google Scholar
13. Tang, B., Xu, S., An, J., Zhao, B., Xu, W. and Lombardi, J. R., Phys. Chem. Chem. Phys. 11, 10286 (2009).Google Scholar
14. Lee, B.H., Hsu, M.S., Hsu, Y.C., Lo, C.W. and Huang, C.L., J. Phys. Chem. C 114, 6222 (2010).Google Scholar
15. Hsu, M.S., Cao, Y.W., Wang, H.W., Pan, Y.S., Lee, B.H. and Huang, C.L., ChemPhysChem 11, 1742 (2010).Google Scholar
16. Yu, P., Huang, J., Yuan, C.T. and Tang, J., Journal of the Chinese Chemical Society 57, 528 (2010).Google Scholar
17. Roosen, A.R. and Carter, W.C., Physica A 261, 232 (1998).Google Scholar
18. Jin, R.C., Cao, Y.W., Mirkin, C.A., Kelly, K.L., Schatz, G.C. and Zheng, J.G., Science 294, 1901 (2001).Google Scholar