Skip to main content Accessibility help

Growth Structure, and Optical Properties of III-Nitride Quantum Dots

  • Hadis Morkoç (a1), Arup Neogi (a2) and Martin Kuball (a3)


Quasi-zero-dimensional (0D) semiconductors have been the subject of considerable interest which is stemmed from their unique physical properties which in turn are conducive to devices such as low threshold lasers and light polarization insensitive detectors, in addition to exciting basic physical phenomena. A laboratory analogue of 0D systems is semiconductor quantum dots (QDs) wherein the electronic states are spatially localized and the energy is fully quantized, loosely similar to an atomic system, making it more stable against thermal perturbations. In addition, the electronic density of states near the band gap is higher than in 3D and 2D systems, leading to a higher probability for optical transitions. Furthermore, the electron localization may dramatically reduce the scattering of electrons by bulk defects and reduce the rate of non-radiative recombination. Semiconductor based and metal based dots have been produced, the former via self-assembly and also by lithographic methods in many II-VI, III-V, and group IV semiconductor. The aim of this paper is focused on III-Nitride based quantum dots covering their production and optical properties, as well as reporting on the GaN quantum dots produced by molecular beam epitaxy utilizing standard, ripening, metal spray followed by nitridation methods.



Hide All
1 Strite, S.T. and Morkoç, H., “GaN, AlN, and InN: A Review,” J. Vacuum Science and Technology B10, 12371266 (1992).
2 Morkoç, H., Strite, S., Gao, G. B., Lin, M.E., Sverdlov, B., and Burns, M., “A Review of Large Bandgap SiC, III-V Nitrides, and ZnSe Based II-VI Semiconductor Structures and Devices,” J. Appl. Phys. Reviews 76(3), 1363 (1994).
3 Mohammad, S. N., Salvador, A., and Morkoç, H., “Emerging GaN Based Devices,” Proc. IEEE 83, 1306 (1995).
4 Mohammad, S. N. and Morkoç, H., “Progress and Prospects of Group III-V Nitride Semiconductors,” Progress in Quantum Electronics 20(5 and 6), 361525 (1996).
5 Ambacher, O., “Growth and Applications of Group III-Nitrides”, J. Phys. D: Appl. Phys. 31, 2653, (1998).
6 Morkoç, Hadis, Carlo, Aldo Di and Cingolani, R., “GaN-Based Modulation Doped FETs and UV Detectors”, Solid State Electronics, 46(2), 157, (2002).
7 Pearton, S. J., Zolper, J. C., Shul, R. J., and Ren, F., “GaN: Processing, Defects, and Devices”, J. Appl. Phys. 86, 1 (1999).
8 Gérard, J. M., Cabrol, O., and Sermage, B., Appl. Phys. Lett., 68, 3123 (1996).
9 Arakawa, Y. and Sakaki, H., Appl. Phys. Lett., 40, 939 (1982).
10 Huang, D., Reshchikov, M. A. and Morkoç, H., “Growth, Structure, and Optical Properties of III-Nitride Quantum Dots”, in “Quantum Dots”, International Journal of High Speed Electronics Vol. 25, No. 1 pp. 79110. (March 2002), Eds. Borovitskaya, E. and Shur, M. S..
11 Huang, D., Fu, Y., and Morko, H.ç, “Preparation, Structural and Optical Properties of GaN based quantum dots”, in “ “ Ed. T. Steiner, Artech House.
12 Morkoç, H., Nitride Semiconductors and Devices (Springer Verlag, Heidelberg, 1999, the second edition is in process);
Nakamura, S. and Fasol, G., The Blue Laser Diode (Springer-Verlag, Heidelberg, 1997).
13 Kuball, M., Gleize, J., Tanaka, Satoru, and Aoyagi, Yoshinobu, Appl. Phys. Lett. 78, 987 (2001).
14 Tanaka, S., Iwai, S., and Aoyagi, Y., Appl. Phys. Lett., 69, 4096 (1996).
15 Shen, X. Q., Tanaka, S., Iwai, S., and Aoyagi, Y., Appl. Phys. Lett., 72, 344 (1998).
16 Widmann, F., Daudin, B., Feuillet, G., Samson, Y., Rouvière, J. L., and Pelekanos, N., J. Appl. Phys., 83, 7618 (1998).
17 Widmann, F., Simon, J., Daudin, B., Feuillet, G., Rouvière, J. L., Pelekanos, N. T., and Fishman, G., Phys. Rev. B, 58, R15989 (1998).
18 Damilano, B., Grandjean, N., Semond, F., Massies, J., and Leroux, M., Appl. Phys. Lett., 75, 962 (1999).
19 Li, Adam, Liu, Feng, Petrovykh, D.Y., Lin, J.-L., Viernow, J., Himpsel, F. J., and Lagally, M. G.,”, Phys. Rev. Lett, 85, 5380 (2000).
20 Gonsalves, Kenneth E., SriRangarajan, Prakash, Carlson, Greg, Kumar, Jayant and Yang, Ke, Appl. Phys. Lett, 71, 2175 (1997).
21 Borsella, E., Garcia, M.A., Mattei, G., Maurizio, C., Mazzoldi, P., Cattaruzza, E., Gonella, F., Battaglin, G., Quaranta, A., and D'Acapito, F., J. Appl. Phys, 90 (9), 4467 (2001).
22 Tanaka, S., Takeuchi, M., Aoyagi, Y., Jpn J. Appl. Phys, 39, (L831), (2000).
23 Woggon, U., Optical Properties of Semiconductor QD, Springer, Berlin, Heidelberg, NY (1997).
24 Lipsanen, H., Sopanen, M., Ahopelto, J., Phys. Rev. B, 51, 13868 (1995).
25 Chamard, V., Metzger, T.H., Daudin, B., Adelmann, C., Mariette, H. and Mula, G., Appl. Phys Lett, 79, 1971 (2001).
26 Talierco, T., Lefebvre, P., Gallart, M. and Morel, A., Condensed, J. Matter Phys., 13, 7027 (2001).
27 Bernardini, F., Fiorentini, V., and Vanderbilt, D., Phys. Rev. B 56, R10024 (1997).
28 Andreev, A. D. and O'Reilly, E. P., Physica E 10, 553 (2001).
29 Das, D. and Melissinos, A. C., Quantum Mechanics, (Gordon and Breach Science Publishers, New York, 1986).
30 Martin, G., Botchkarev, A., Rockett, A., and Morkoç, H., Appl. Phys. Lett., 68, 2541 (1996).
31 Davydov, V. Y., Averkiev, N. S., Goncharuk, I. N., Delson, D. K., Nikitina, I. P., Polkovnokov, A. S., Smirnov, A. N., and Jacobson, M. A., J. Appl. Phys. 82, 5097(1997).
32 Shikanai, A., Azuhata, T., Sota, T., Chichibu, S., Kuramata, A., Horino, K., and Nakamura, S., J. Appl. Phys. 81, 417 (1997).
33 Amano, H., Hiramatsu, K., and Akasaki, I., Jpn. J. Appl. Phys. 2 27, L1384 (1998).
34 Shan, W., Hauenstein, R. J., Fischer, A. J., Song, J. J., Perry, W. G., Bremser, M. D., Davis, R. F., and Goldenber, B., Phys. Rev. B54, 13460 (1996).
35 Shimada, K., Sota, T., and Suzuki, K., J. Appl. Phys. 84, 4951(1998).
36 Martinez, O., Mazzoni, M., Rossi, F., Armani, N., Salviati, G., Lottici, P. P., and Bersani, D., Phys. Stat. Sol. (a), 195, pp. 2631, (2003).
37 Ramvall, P., Riblet, P., Nomura, S., Aoyagi, Y., and Tanaka, S., J. Appl. Phys. 87, 3883 (2000).
38 Nye, J. F., Physical Properties of Crystals, (Oxford University Press, Oxford, 1985).
39 Bernardini, F., Fiorentini, V., and Vanderbilt, D., Phys. Rev. B56, R10024 (1997).
40 Bernardini, F., Fiorentini, V. Physical Review B, 63, 193201 (2001).
41 Mendez, E. E., Bastard, G., Chang, L. L., Esaki, L., Morkoç, H., and Fischer, R., Phys. Rev. B26, 7101 (1982).
42 Miller, D. A. B., Chemla, D. S., Damen, T. C., Gossard, A. C., Wiegmann, W., Wood, T. H., and Burrus, C. A., Phys. Rev. B32, 1043 (1985).
43 Reshchikov, M. A., Cui, J., Yun, F., Visconti, P., Nathan, M. I., Molnar, R., and Morkoç, H. Fall MRS, 2000, Mat. Res. Soc. Symp. Proc. 639, G11.2 (2001).
44 Widmann, F., Simon, J., Pelekanos, N.T., Daudin, B., Feuillet, G., Rouviere, J.L., Fishman, G., Microelectronic Journal, 30, 353 (1999).
45 Hayes, J.M., Kuball, M., Bell, A., Harrison, I., Korakakis, D., and Foxon, C.T., Appl. Phys. Lett. 75, 2097 (1999).
46 Hayes, J.M., Kuball, M., Shi, Ying, and Edgar, J.H., Jpn. J. Appl. Phys. 39, L710 (2000).
47 Gleize, J., Demangeot, F., Frandon, J., and Renucci, M. A., Widmann, F. and Daudin, B., Appl. Phys. Lett., 74, 703 (1999).
48 Gleize, J., Demangeot, F., Frandon, J., Renucci, M.A., Kuball, M., Damilano, B., Grandjean, N., and Massies, J., Appl. Phys. Lett. 79, 686 (2001).
49 Yoffe, A.D., Adv. Phys., 42, 173 (1993).
50 Iizuka, N., Suzuk, N., Jpn J. Appl. Phys -1 39 (4B), 2376 (2000).
51 Harris, J.C., Someya, T., Kako, S., Hoshino, K. and Arakawa, Y., Appl. Phys. Lett. 77, 1005 (2000).

Related content

Powered by UNSILO

Growth Structure, and Optical Properties of III-Nitride Quantum Dots

  • Hadis Morkoç (a1), Arup Neogi (a2) and Martin Kuball (a3)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.