Hostname: page-component-7c8c6479df-ph5wq Total loading time: 0 Render date: 2024-03-30T01:03:15.509Z Has data issue: false hasContentIssue false

Growth, Structure and Characterization of Electrodeposited Co/Cu Ultrathin Films and Multilayers

Published online by Cambridge University Press:  10 February 2011

Y. Jyoko
Affiliation:
Department of Materials Science & Engineering, Faculty of Engineering, Kyushu University, Fukuoka 812, Japan
S. Kashiwabara
Affiliation:
Department of Materials Science & Engineering, Faculty of Engineering, Kyushu University, Fukuoka 812, Japan
Y. Hayashi
Affiliation:
Department of Materials Science & Engineering, Faculty of Engineering, Kyushu University, Fukuoka 812, Japan
Get access

Abstract

Preparation of giant magnctorcsistancc Co/Cu multilayers by electrodeposition has been discussed on the basis of a nucleation- growth mechanism and experimental observations. Reflection electron microscopy (REM- RHEED) studies of clectrodcpositcd Co, Cu/Pt(111) ultrathin layers and bilayers have revealed a simultaneous multinuclcar multilayer growth (pseudo layer- by- layer growth). REM- RHEED observations have also suggested the formation of an additional (2×2) superstructure on an epitaxially grown Cu/Co/Pt(111) bilayer surface. “Giant” magnctorcsistancc and oscillatory antifcrramagnetic intcrlaycr coupling have been observed in a (111) textured Co/Cu multilayered nanostructurc, prepared by electrodeposition under potential control in the presence of a very slight amount of CrO3. Such a multilayered structure containing a nominal nonmagnetic Cu spacer layer thickness of 3.2 nm exhibits a large saturation magnctorcsistancc of more than 18% at room temperature.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Baibich, M. N., Broto, J. M., Fert, A., Nguyen Van Dau, F., Petroff, F., Etienne, P., Creuset, G., Friederich, A. and Chazelas, J., Phys. Rev. Lett. 61, 2472 (1988).Google Scholar
2. Mosca, D. H., Petroff, F., Fcrt, A., Schroeder, P. A., Pratt, W. P. Jr and Laloec, R., J. Magn. Magn. Mater. 94, LI (1991).Google Scholar
3. Parkin, S. S. P., Marks, R. F., Farrow, R. F. C., Harp, G. P., Lam, Q. H. and Savoy, R. J., Phys. Rev. B 46, 9262(1992).Google Scholar
4. Bcrkowitz, A. E., Mitchell, J. R., Carey, M. J., Young, A. P., Zhang, S., Spada, F. E., Parker, F. T., Hutten, A. and Thomas, G., Phys. Rev. Lett. 68, 3745 (1992);Google Scholar
Xiao, J. Q., Jiang, J. S. and Chien, C. L., Phys. Rev. Lett. 68, 3749 (1992).Google Scholar
5. Hua, S. Z., Lashmorc, D. S., Salamanca-Riba, L., Schwarzachcr, W., Swartzenruber, L. J., McMichael, R. D., Bennett, L. H. and Hart, R., J. Appl. Phys. 76, 6519 (1994).Google Scholar
6. Lenczowski, S. K. J., Schonenberger, C., Gijs, M. A. M. and de Jonge, W. J. M., J. Magn. Magn. Mater. 148, 455(1995).Google Scholar
7. Piraux, L., George, J. M., Dcsprcs, J. F., Leroy, C., Fcrain, E., Legras, R., Ounadjcla, K. and Fcrt, A., Appl. Phys. Lett. 65, 2484 (1994).Google Scholar
8. Blondel, A., Meier, J. P., Doudin, B. and Anscrmct, J.-Ph., Appl. Phys. Lett. 65, 3019 (1994).Google Scholar
9. Blythc, H. J. and Fcdosyuk, V. M., J. Phys. Condens. Mater. 7, 3461 (1995).Google Scholar
10. Jyoko, Y., Kashiwabara, S. and Hayashi, Y., Mater. Res. Soc. Symp. Proc. 382, 167 (1995); J. Magn. Magn. Mater. 156, 35 (1996).Google Scholar
11. Wang, Z. L., in Reflection Electron Microscopy and Speclroscopy for Surface Analysis (Cambridge University Press, New York, 1996), p. 129.Google Scholar