Hostname: page-component-848d4c4894-cjp7w Total loading time: 0 Render date: 2024-06-21T10:50:08.188Z Has data issue: false hasContentIssue false

Growth, processing and characterization of GaN/AlGaN/SiC vertical n-p diodes

Published online by Cambridge University Press:  01 February 2011

Steven Boeykens
Affiliation:
steven.boeykens@imec.be, IMEC vzw, MCP, Kapeldreef 75, Leuven, N/A, B-3001, Belgium
Maarten Leys
Affiliation:
maarten.leys@imec.be, IMEC, Belgium
Marianne Germain
Affiliation:
Marianne.Germain@imec.be, IMEC, Belgium
Jef Poortmans
Affiliation:
jef.poortmans@imec.be, IMEC, Belgium
Benny Van Daele
Affiliation:
Benny.vandaele@ua.ac.be, Universiteit Antwerpen, EMAT, Belgium
Staf Van Tendeloo
Affiliation:
Staf.vantendeloo@ua.ac.be, Universiteit Antwerpen, EMAT, Belgium
Ronnie Belmans
Affiliation:
ronnie.belmans@esat.kuleuven.ac.be, Katholieke Universiteit Leuven, Electrical Engineering, Belgium
Gustaaf Borghs
Affiliation:
gustaaf.borghs@imec.be, IMEC, Belgium
Get access

Abstract

Application of SiC substrates instead of the most commonly used sapphire for the heteroepitaxial growth of III-Nitrides offers advantages as better lattice matching, higher thermal conductivity, and electrical conductivity. This namely offers interesting perspectives for the development of vertical III-Nitride devices for switching purposes. For example, an AlGaN/SiC heterojunction could improve the performance of SiC bipolar transistors. In this work, n-type GaN layers have been grown by MOVPE on p-type 4H-SiC substrates using Si doped Al0.08Ga0.92N or Al0.3Ga0.7N nucleation layers. They have been characterized with temperature dependent current-voltage (I-V-T), capacitance-voltage (C-V) techniques and transmission electron microscopy (TEM).

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Pankove, J., Chang, S.S., Lee, H.C., Molnar, R.J., Moustakas, T.D. and Van Zeghbroeck, B., Proc. IEEE Int. Elec. Dev. Meeting, Dec. 1994, 389, 1994 Google Scholar
2 Torvik, J.T., Pankove, J.I. and Van Zeghbroeck, B., Solid-State Electronics 44, 1229, 2000 CrossRefGoogle Scholar
3 Danielsson, E., Breitholtz, B., Zetterling, C.-M. and Ostling, M., Physica Scripta T79, 290, 1999 CrossRefGoogle Scholar
4 Vennegues, P. and Lahreche, H., Appl. Phys. Lett 77, 4310, 2000 CrossRefGoogle Scholar
5 Wagener, M.C., James, G. R. and Omnes, F., Appl. Phys. Lett. 83, 4193, 2003 CrossRefGoogle Scholar
6 Boeykens, S., Leys, M. R., Germain, M., Belmans, R. and Borghs, G., J. Cryst. Growth 272, 312, 2004 CrossRefGoogle Scholar
7 Torvik, J.T., Leksono, M., Pankove, J.I., Van Zeghbroeck, B., Ng, H.M. and Moustakas, T.D., Appl. Phys. Lett. 72, 1371, 1998 CrossRefGoogle Scholar
8 Skromme, B. J., Luckowski, E., Moore, K., Bhatnagar, M., Weitzel, C. E., Gehoski, T. and Ganser, D., J. Elec. Mat. 29, 376, 2000 CrossRefGoogle Scholar
9 Defives, D., Niblanc, O., Dua, C., Brylinski, C., Barthula, M., Aubry-Fortuna, V. and Meyer, F., IEEE Trans. Elec. Dev. 46, 449, 1999 CrossRefGoogle Scholar
10 Sze, S.M., Physics of semiconductor devices, New York, Wiley, 1981 Google Scholar
11 Danielsson, E., Zetterling, C.-M., Ostling, M., Linthicum, K., Thomson, D.B., Nam, O.-H. and Davis, R.F., Solid-State Electronics 46, 827, 2002 CrossRefGoogle Scholar
12 King, S.W., Davis, R.F., Ronning, C., Benjamin, M.C. and Nemanich, R.J., J. Appl. Phys. 86, 4483, 1999 CrossRefGoogle Scholar
13 Danielsson, E., Zetterling, C.-M., Ostling, M., Tsvetkov, D. and Dmitriev, V.A., J. Appl. Phys. 91, 2372, 2002 CrossRefGoogle Scholar
14 Kroger, R., Einfeldt, S., Chierchia, R., Hommel, D., Reitmeier, Z. J., Davis, R.F. and Liu, Q. K. K., J. Appl. Phys. 97, 083501, 2005 CrossRefGoogle Scholar