Hostname: page-component-68945f75b7-w588h Total loading time: 0 Render date: 2024-09-04T01:49:00.815Z Has data issue: false hasContentIssue false

Growth of High Quality c-plane AlN on a-plane Sapphire

Published online by Cambridge University Press:  31 January 2011

Reina Miyagawa
Affiliation:
re_miyagawa@opt.elec.mie-u.ac.jp, Mie University, Tsu, Japan
Jiejun Wu
Affiliation:
wujiejun@opt.elec.mie-u.ac.jp, Mie University, Tsu, Japan
Hideto Miyake
Affiliation:
Miyake@elec.mie-u.ac.jp, Mie University, Tsu, Japan
Kazumasa Hiramatsu
Affiliation:
Hiramatsu@elec.mie-u.ac.jp, Mie University, Tsu, Japan
Get access

Abstract

c-plane (0001) AlN layers were grown on sapphire (11-20) and (0001) substrates by hydride vapor phase epitaxy (HVPE) and metal-organic vapor phase epitaxy (MOVPE), respectively. The growth temperatures were adjusted from 1430-1500 °C and the reactor pressure was kept constant at 30 Torr. Mirror and flat c-plane AlN were obtained grown on both a-plane and c-plane sapphire. Crystalline quality and surface roughness are improved with increasing growth temperature, detected by high resolution X-ray diffraction (HRXRD) and atomic force microscopy (AFM). The Full widths at half maximum (FWHM) values of (10-12) diffraction are 519 and 1219 arcsec for c-plane AlN grown on a-plane sapphire and c-plane sapphire, respectively. It indicates that a-plane sapphire substrate benefits to decrease dislocations density.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Newman, S. A., Kamber, D. S., Baker, T. J., Wu, Y., Wu, F., Chen, Z., Nakamura, S., Speck, J. S., and DenBaars, S. P.: Appl. Phys. Lett. 94 (2009) 121906.Google Scholar
[2] Imura, M., Nakano, K., Kitano, T., Fujimoto, N., Narita, G., Okada, N., Balakrishnan, K., Iwaya, M., Kamiyama, S., Amano, H., and Akasaki, I.: Appl. Phys. Lett. 89 (2006) 221901.Google Scholar
[3] Mei, J., Ponce, F. A., Fareed, R. S. Q., Yang, J. W., and Khan, M. A.: Appl. Phys. Lett. 90 (2007) 221909.Google Scholar
[4] Chen, Z., Newman, S., Brown, D., Chung, R., Keller, S., Mishra, U. K., DenBaars, S. P., and Nakamura, S.: Appl. Phys. Lett. 93 (2008) 191906.Google Scholar
[5] Takeuchi, M., Ooishi, S., Ohtsuka, T., Maegawa, T., Koyama, T., Chichibu, S. F., and Aoyagi, Y.: Appl. Phys. Express 1 (2008) 021102.Google Scholar
[6] Imura, M., Fujimoto, N., Okada, N., Balakrishnan, K., Iwaya, M., Kamiyama, S., Amano, H., Akasaki, I., Noro, T., Takagi, T., and Bandoh, A.: J. Cryst. Growth 300 (2007) 136.Google Scholar
[7] Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsushita, T., Kiyoku, H., and Sugimoto, Y.: Jpn. J. Appl. Phys. 35 (1996) L217.Google Scholar
[8] Chauveau, H. K., Mierry, P. D., Cabane, H., and Gindhart, D.: J. Appl. Phys. 104 (2008) 113516.Google Scholar
[9] Paskova, T., Darakchieva, V., Valcheva, E., Paskov, P. P., Monemar, B., and Heuken, M.: J. Cryst. Growth 257 (2003) 1.Google Scholar