Skip to main content Accessibility help
×
Home

Growth of Gan on Porous Sic Substrates by Plasma-Assisted Molecular Beam Epitaxy

  • C. K. Inoki (a1), T. S. Kuan (a1), C. D. Lee (a2), Ashutosh Sagar (a2) and R. M. Feenstra (a2)...

Abstract

We have explored the growth of GaN on porous SiC substrates by plasma-assisted molecular beam epitaxy. The porous 4H- and 6H-SiC(0001) substrates used in this study contain 10 to 100-nm sized pores and a thin skin layer at the surface. This skin layer was partially removed prior to the growth by H-etching. Transmission electron microscopy (TEM) observations indicate that the epitaxial GaN growth initiates from the surface areas between pores, and the exposed surface pores tend to extend into GaN as open tubes and trap Ga droplets. Plan-view TEM observations indicate that the GaN layers grown on porous substrates contain fewer dislocations than layers grown on non-porous substrates by roughly a factor of two. The GaN layers grown on a porous SiC substrate were also found to be mechanically more relaxed than those grown on non-porous substrates; electron diffraction patterns indicate that the former are free of misfit strain or are even in tension after cooling to room temperature.

Copyright

References

Hide All
1. Saddow, S. E., Mynbaeva, M., Choyke, W. J., Bai, S., Melnychuk, G., Koshka, Y., Dimitriev, V. and Wood, C. E. C., Materials Science Forum 353-356, 115 (2001).
2. Mynbaeva, M., Titkov, A., Kryzhanovski, A., Ratnikov, V., Huhtinen, H., Laiho, R. and Dmitriev, V., Appl. Phys. Lett. 76, 1113 (2000)
3. Mynbaeva, M., Titkov, A., Kryzhanovski, A., Kotousova, I., Zubrilov, A. S., Ratnikov, V. V., Davydov, V. Yu., Kuznetsov, N. I., Mynbaev, K., Tsvetkov, D. V., Stepanov, S., Cherenkov, A., and Dmitriev, V., MRS Internet J. Nitride Semicond. Res. 4, 14 (1999)
4. Mynbaeva, M., Titkov, A., Kryzhanovski, A., Zubrilov, A., Ratnikov, V., Davydov, V., Kuznetsov, N., Mynbaev, K., Stepanov, S., Cherenkov, A., Kotousova, I., Tsvetkov, D., and Dmitriev, V., Mat. Res. Soc. Symp. Vol. 595, W2.7 (2000).
5. Melnychuk, G., Mynbaeva, M., Rendakova, S., Dmitriev, V. and Saddow, S. E., Mat. Res. Soc. Symp. Vol. 622, T4.2 (2000).
6. Li, X., Kim, Y. -W., Bohn, P. W., and Adesida, I., Appl. Phys. Lett. 80, 980 (2002)
7. Shor, J. S., Grimberg, I., Weiss, B. -Z. and Kurtz, A. D., Appl. Phys. Lett. 62, 2836 (1993)
8. Sagar, A., Lee, C. D., Feenstra, R. M., Inoki, C. K., and Kuan, T. S., submitted to J. Appl. Phys. The increased temperature of porous SiC is consistent with the well known characteristic of porous Si that its thermal conductivity is 1-2 orders of magnitude lower than that of nonporous Si (see, e.g., Perichon, S. et al., Diffus. Defect Data B, Solid State Phenom. 80-81, 417 (2001)).
9. Ramachandran, V., Brady, M. F., Smith, A. R. and Feenstra, R. M., J. Electron. Mat. 27, 308 (1998)
10. Lee, C. D., Sagar, A., Feenstra, R. M., Inoki, C. K., Kuan, T. S., Sarney, W. L., and Salamanca-Riba, L., Appl. Phys. Lett. 79, 3428 (2001)
11. Lee, C. D., Feenstra, R. M., Shigiltchoff, O., Devaty, R. P. and Choyke, W. J., MRS Internet J. Nitride Semicond. Res. 7, 2 (2002)
12.It is possible that the SiC lattice constant changes when the material is made porous. For example, porous Si is found to have a larger lattice constant than nonporous Si (Barla, K., Herino, R., Bomchil, G., and Pfister, J. C., J. Cryst. Growth 68, 727 (1984)).
13. Waltereit, P., Brandt, O., Trampert, A., Ramsteiner, M., Reiche, M., Qi, M., and Ploog, K. H., Appl. Phys. Lett. 74, 3660 (1999)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed