Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-25T20:35:05.081Z Has data issue: false hasContentIssue false

Growth of GaN from elemental Gallium and Ammonia via Modified Sandwich Growth Technique

Published online by Cambridge University Press:  01 February 2011

E. Berkman
Affiliation:
North Carolina State University, Department of Materials Science and Engineering, Raleigh, NC 27695–7919
R. Collazo
Affiliation:
North Carolina State University, Department of Materials Science and Engineering, Raleigh, NC 27695–7919
R. Schlesser
Affiliation:
North Carolina State University, Department of Materials Science and Engineering, Raleigh, NC 27695–7919
Z. Sitar
Affiliation:
North Carolina State University, Department of Materials Science and Engineering, Raleigh, NC 27695–7919
Get access

Abstract

Gallium nitride (GaN) films were grown on (0001) sapphire substrates at 1050°C by controlled evaporation of gallium (Ga) metal and reaction with ammonia (NH3) at a total reactor pressure of 800 Torr. Pure nitrogen (N2) was flowed directly above the molten Ga source to prevented direct reaction between the molten Ga and ammonia, which causes Ga spattering and GaN crust formation. At the same time, this substantially enhanced the Ga transport to the substrate. A simple mass-transport model based on total reactor pressure, gas flow rates and source temperature was developed and verified. The theoretical calculations and growth rate measurements at different ammonia flow rates and reactor pressures showed that the maximum growth rate was controlled by transport of both Ga species and reactive ammonia to the substrate surface.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Boćkowski, M., Grzegory, I., Krukowski, S., Łucznik, B., Wróblewski, M., Kamler, G., Borysiuk, J., Kwiatkowski, P., Jasik, K. and Porowski, S., J. Crystal Growth, 270 (2004) 409 Google Scholar
2. Johnson, W.C., Parsons, J. B. and Crew, M.C., J. Phys. Chem. 36 (1932) 2651 Google Scholar
3. Ejder, E., J. Crystal Growth, 22 (1974) 44 Google Scholar
4. Balkas, C. M., Sitar, Z., Zheleva, T., Bergman, L., Shmagin, I. K., Muth, J. F., Kolbas, R., Nemanich, R., and Davis, R. F., Mat. Res. Soc. Symp. Proc., 449 (1997) 41 Google Scholar
5. Wetzel, C., Volm, D., Meyer, B.K., Pressel, K., Nilsson, S., Mokhov, E.N. and Baranov, P.G., Appl. Phys. Lett., 65 (1994) 1033 Google Scholar
6. Fischer, S., Wetzel, C., Hansen, W.L., Bourret-Chourchesne, E.D., Meyer, B.K. and Haller, E.E., Appl. Phys. Lett., 69 (1996) 2716 Google Scholar
7. Vodakov, Y.A., Mokhov, E.N., Roenkov, A.D., Boiko, M.E., and Baranov, P.G., J. Crystal Growth, 183 (1998) 10 Google Scholar
8. Kamler, G., Zachara, J., Podsiadlo, S., Adamowicz, L., Gebicki, W., J. Crystal Growth 212 (2000) 39 Google Scholar
9. Shin, H., Ph.D. Dissertation, North Carolina State University (2001)Google Scholar
10. Shin, H., Thomson, D.B., Schlesser, R., Davis, R.F., Sitar, Z., J. Crystal Growth, 241 (2002) 404 Google Scholar
11. Callahan, M., Harris, M., Suscavage, M., Bliss, D., Baily, J., MRS Internet J. Nitride Semicond. Res., 4 (1999) 10 Google Scholar
12. Vodakov, Y.A., Mokhov, E.N., Ramm, M.G., Roenkov, A.D., Ostroumov, A.G., Wolfson, A.A., Karpov, S. Yu., Makarov, Yu. N. and Jurgensen, H., MRS Symp. Proc. 482 (1998) 27 Google Scholar
13. Berkman, E., Collazo, R., Schlesser, R., Sitar, Z., to be published.Google Scholar
14. Mayer, B., Collins, C.C., and Walton, M., J. Vac. Sci. Technol. A 19.1. (2001) 329 Google Scholar
15. Betsch, R. J., J. Cryst. Growth 77 (1986) 210 Google Scholar
16. Berkman, E., Ph. D. Dissertation, North Carolina State University (2005)Google Scholar
17. Oginoand, T., Aoki, M., J. Appl. Phys. 19 (1980) 2395 Google Scholar
18. Barin, I., “Thermochemical Data of Pure Substances”, VCH Publishers, Inc., Weinheim (1995)Google Scholar
19. Grunze, M. in King, D.A. and Woodruff, D.P., “The Chemical Physics of Solid Surfaces and Heterogeneous Catalysis, Synthesis and Decomposition of Ammonia”, 4, Elsevier Scientific Publishing Company, Amsterdam (1982)Google Scholar