Hostname: page-component-77c89778f8-vpsfw Total loading time: 0 Render date: 2024-07-18T23:30:51.302Z Has data issue: false hasContentIssue false

Growth of GaAs on Si(100) Substrate by Ionized Cluster Beam Method

Published online by Cambridge University Press:  25 February 2011

M. Shinohara
Affiliation:
Central Research Laboratory, Shimadzu Corporation, 1, Nishinokyo-Kuwabaracho, Nakagyo-ku, Kyoto 604, Japan
F. Ohtani
Affiliation:
Central Research Laboratory, Shimadzu Corporation, 1, Nishinokyo-Kuwabaracho, Nakagyo-ku, Kyoto 604, Japan
O. Ishiyama
Affiliation:
Central Research Laboratory, Shimadzu Corporation, 1, Nishinokyo-Kuwabaracho, Nakagyo-ku, Kyoto 604, Japan
M. Asari
Affiliation:
Central Research Laboratory, Shimadzu Corporation, 1, Nishinokyo-Kuwabaracho, Nakagyo-ku, Kyoto 604, Japan
Get access

Abstract

GaAs epilayers on (100)Si substrates have been grown by ionized cluster beam(ICB) method under conventional high vacuum conditions. The developed deposition method has two characteristics: first is cleaning the Si surface by accelerated As clusters and second is adopting double layer structure in order to confine dislocations within a primary layer. As a result of these features, the etch pit density came to be 2×1O6cm−2 and the crystal quality was comparable to that of molecular beam epitaxy(MBE) or metal organic chemical vapor deposition(MOCVD) method. In the present paper, we discuss those characteristic phenomena of ICB method and demonstrate MESFET's fabricated on our GaAs grown on Si substrates.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Shichijo, H. and Lee, J.W., Mat.Res.Soc.Proc. 67,173(1986)CrossRefGoogle Scholar
2. Vernon, S.M., Haven, V.E., Tobin, S.P. and Wolfson, R.G., J.Cryst.Growth 77,530(1986)CrossRefGoogle Scholar
3. Takagi, T., Yamada, I. and Sasaki, A.,.Proc. 2nd Int'l.Conf.Ion Sources(1972).Google Scholar
4. Shinohara, M., Ohtani, F., Kishihara, H. and Asari, M., Proc.13th Symp. ISIAT, Tokyo, 147(1990)Google Scholar
5. Akiyama, M., Kawarada, Y., Ueda, T., Nishi, S. and Kaminishi, K., J.Cryst.Growth 77,490(1986)CrossRefGoogle Scholar
6. Soga, T., Hattori, S., Sakai, S. and Umeno, M., J.Cryst.Growth 77,498(1986)CrossRefGoogle Scholar
7. Kawabe, M. and Ueda, T., Jpn.J.Appl.Phys. 26,L944(1987)CrossRefGoogle Scholar
8. Zemon, S., Shastry, S.K., Norris, P., Jagannath, C. and Lambert, G., Solid State Commun. 58,457(1986)CrossRefGoogle Scholar
9. Freudlich, A., Grenet, J.C., Neu, G., Leycuras, A. and Verie, C., Appl.Phys.Lett. 52,1976(1988)CrossRefGoogle Scholar
10. Lum, R.M. and Klingert, K., Appl.Phys.Lett. 51,36(1987)CrossRefGoogle Scholar