Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-06-27T23:04:27.029Z Has data issue: false hasContentIssue false

Growth of GaAs, InxGa1−xAs, and AlxGa1−xAs on GaAs (111)B Substrates by Molecular Beam Epitaxy

Published online by Cambridge University Press:  26 February 2011

K. Yang
Affiliation:
Center for Integrated Electronics and Department of Physics, Rensselaer Polytechnic Institute, Troy NY 12180
L. J. Schowalter
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM 87545
B. K. Laurich
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM 87545
D. L. Smith
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM 87545
Get access

Abstract

We have studied the growth of GaAs, InxGa1−xAs, and AlxGa1−xAs on on-axis GaAs (111)B substrates by MBE. RHEED patterns are used to identify different growth conditions. Using the optimized growth parameters, GaAs and Al0.3Ga0.7As films with surface defect densities (observed under an optical microscope) of less than 50 cm−2 were routinely achieved. No significant differences in surface morphology and carrier concentration were found between As4 and As2 if their mass fluxes are the same. A Hall mobility of 30,000 cm2V−1s−1 at 77 K was obtained for a GaAs film with a free electron concentration of 2×1015cm−3.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Yang, K. and Schowalter, L. J., submitted to J. Appl. Physics.Google Scholar
2. Hayakawa, T., Nagai, M., Morishima, M., Horie, H., and Matsumoto, , Appl. Phys. Lett. 59, 2287 (1991)Google Scholar
3. Chin, A., Martin, P., Ho, P., Ballingall, J., Yu, T., and Mazuroski, J., Appl. Phys. Lett. 59, 1899 (1991)Google Scholar
4. Tsutsui, K., Mizukami, H., Ishiyama, O., Nakamura, S., and Furukawa, S., Jpn. J. Appl. Phys. 29, 468 (1990)Google Scholar
5. Smith, D. L., Solid State Commun. 57, 919 (1986)CrossRefGoogle Scholar
6. Mailoit, C. and Smith, D. L., Phys. Rev. B 35, 1242 (1987)Google Scholar
7. Laurich, B. K., Elcess, K., Fonstad, C. G., Beery, J. G., Mailiot, C., and Smith, D. L., Phys. Rev. Lett. 62 649 (1989)Google Scholar
8. Caridi, E. A., Chang, T. Y., Goossen, K. W., and Eastman, L. F., Appl. Phys. Lett. 56, 659 (1990)Google Scholar
9. Hayakawa, T., Kondo, M., Morita, T., Takahashi, K., Suyama, T., Yamamoto, S., and Hijikata, T., Appl. Phys. Lett. 51, 1705 (1987)CrossRefGoogle Scholar
10. Hayakawa, T., Kondo, M., Suyama, T., Takahashi, K., Yamamoto, S., and Hijikata, T., Jap. J. Appl‥ Phys. 26, L302 (1987)Google Scholar
11. Vina, L. and Wang, W. I., Appl. Phys. Lett. 48, 36 (1986)Google Scholar
12. Yang, K. and Schowalter, L. J., in preparation.Google Scholar
13. Chen, P., Rajkumar, K. C., and Madhukar, A., Appl. Phys. Lett. 39, 800 (1985)CrossRefGoogle Scholar
14. Elcess, K., Lievin, J.-L., and Fonstad, C. G., J. Vac. Sci. Technol. B 6 (2), 638 (1988)CrossRefGoogle Scholar
15. Ballingall, J. M. and Wood, G. E. C., J. Vac. Sci. Technol. B 1 (2), 162 (1983)Google Scholar
16. Chai, Y. G., Chow, R. and Wood, C. E. C., Appli. Phys. Lett. 39, 800 (1985)CrossRefGoogle Scholar