Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-26T02:59:14.062Z Has data issue: false hasContentIssue false

Growth of Erbium Doped PbF2 - SrF2 Epitaxial Layers on GaAs(111)B for Upconversion Waveguide Laser Applications

Published online by Cambridge University Press:  15 February 2011

M. Lui
Affiliation:
Hughes Research Laboratories, 3011 Malibu Canyon Roads, Malibu, CA 90265
R. A. McFarlane
Affiliation:
Hughes Research Laboratories, 3011 Malibu Canyon Roads, Malibu, CA 90265
D. Yap
Affiliation:
Hughes Research Laboratories, 3011 Malibu Canyon Roads, Malibu, CA 90265
Get access

Abstract

Waveguide structures offer the possibility of making an upconversion laser operating at room temperature. By reducing the optical mode cross section can lead to a very high pump power density which allows modest pumping powers to overcome non-radiative decay processes. We have reported earlier on the observation of upconversion luminescence from both planar and channel waveguides of Erbium doped ZnF2 on MgF2(001) and Erbium doped PbF2 on GaAs(100). The epitaxial fluoride layers were all grown by Molecular Beam Epitaxy. Fluoride films preferentially grow on the (111) GaAs surface. In order to exploit this fact, we have grown Erbium doped PbF2 on GaAs(111)B with an intervening SrF2 cladding layer. The SrF2 and PbF2 growth conditions have been optimized on GaAs(111)B using X-ray rocking curve analysis. The crystalline quality of the films grown on GaAs(111)B are far superior to those grown on GaAs(100). Upconversion luminescence has been observed in the PbF2: Er/SrF2/GaAs(111)B planar waveguide structures. The guide ends were formed by cleaving the semiconductor wafer and the 800nm and 980nm pump light was introduced from a Ti-Sapphire laser by end pumping using a microscope objective.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Lui, M., McFarlane, R.A., and Yap, D., Electron. Lett. 29, 172 (1993).Google Scholar
2. Lui, M., McFarlane, R.A., and Yap, D., Mat. Res. Soc. Symp. Proc. 301, 331 (1993).CrossRefGoogle Scholar
3. McFarlane, R.A.,Google Scholar
4. Silversmith, A.J., Lenth, W., and Macfarlane, R.M., Appl. Phys. Lett. 51, 1977 (1987).Google Scholar
5. Macfarlane, R.M., Fong, F., Silversmith, A.J., and Lenth, W., Appl. Phys. Lett. 52, 1300 (1988).Google Scholar
6. McFarlane, R.A., Appl. Phys. Lett. 54, 2301 (1989).Google Scholar
7. Nguyen, D.C., Faulkner, G.E., and Dulich, M., Appl. Optics 28, 3553 (1989).Google Scholar
8. McFarlane, R.A., Optics Lett. 16, 1397 (1991).Google Scholar
9. Hebert, T., Wannemacher, R., Macfarlane, R.M., and Lenth, W., Appl. Phys. Lett. 60, 2592 (1992).Google Scholar
10. Xie, P. and Rand, S.C., Optics Lett. 17, 1198 (1992).Google Scholar
11. Thrash, R.J. and Johnson, L.F., Compact Blue-Green Laser Technical Digest 6, 17 (1992).Google Scholar
12. Brede, R., Heumann, E., Koetke, J., Danger, T., Huber, G., and Chai, B., Appl. Phys. Lett. 63, 2030 (1993).Google Scholar
13. Whitley, T.J., Millar, C.A., Wyatt, R., Brierley, M.C., and Szebesta, D., Electron. Lett. 27, 1785 (1991).Google Scholar
14. Grubb, S.G., Bennett, K.W., Cannon, R.S., and Humber, W.F., Electron. Lett. 28, 1243 (1992).CrossRefGoogle Scholar
15. Allain, J.Y., Monerie, M., and Poignant, H., Electron. Lett. 26, 261 (1990).Google Scholar
16. Smart, R.G., Hanna, D.C., Tropper, A.C., Davey, S.T., Carter, S.F., and Szebesta, D., Electron. Lett. 27, 1307 (1991).Google Scholar
17. Chartier, I.. Ferrand, B., Pelenc, D., Field, S.J., Hanna, D.C., Large, A.C., Shepherd, D.P., and Tropper, A.C., Optics Lett. 17, 810 (1992).Google Scholar
18. Field, S.J., Hanna, D.C., Large, A.C., Shepherd, D.P., Tropper, A.C., Chandler, P.J., Townsend, P.D., and Zhang, L., Electron. Lett. 27, 2375 (1991).Google Scholar
19. Field, S.J., Hanna, D.C., Large, A.C., Shepherd, D.P., Tropper, A.C., Chandler, P.J., Townsend, P.D., and Zhang, L., Optics Lett. 17, 52 (1992).Google Scholar
20. Brinkmann, R., Sohle, W., and Suche, H., Electron. Lett. 27, 415 (1991).Google Scholar
21. Fathauer, R.W. and Schowalter, L.J., Appl. Phys. Lett. 45, 519 (1984).Google Scholar
22. Tasker, P.W., J. Phys. (Paris) 41, C6 (1980).Google Scholar
23. Hayakawa, T., Suyama, T., Takahashi, K., Kondo, M., Yamamoto, S., and Hijikata, T., Appl. Phys. Lett. 52, 339 (1988).Google Scholar
24. EPI, St. Paul MN 55101.Google Scholar
25. Schowalter, L.J. and Fathauer, R.W., CRC Crit. Rev. Sol. Stat. Mat. Sci. 15, 367 (1989).Google Scholar