Hostname: page-component-77c89778f8-m8s7h Total loading time: 0 Render date: 2024-07-16T09:48:29.594Z Has data issue: false hasContentIssue false

Growth of Epitaxial β-SiC Films on Porous Si(100) Substrates from MTS in a Hot Wall LPCVD Reactor

Published online by Cambridge University Press:  15 February 2011

Chien C. Chiu
Affiliation:
Department of Materials Science and Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0237
Seshu B. Desu
Affiliation:
To whom all correspondence should be addressed.
Gang Chen
Affiliation:
Department of Materials Science and Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0237
Get access

Abstract

β–SiC thin films were epitaxially grown on porous Si(100) substrates at 1150° C from methyltrichlorosilane (CH3SiCl3 or MTS) in a hot wall reactor by Vsing low pressure chemical vapor deposition (LPCVD). The growth rate was 120 Å/min. Epitaxial β–SiC(100) thin films were obtained after a deposition time of 12.5 min. The crystallinity of the β–SiC films was affected by the deposition time. For instance, rotational β–SiC(100) crystals and polycrystalline β–SiC with a highly preferred orientation of (100) planes were observed for a deposition time of 50 min. The results from XRD and TEM indicated that polycrystalline β–SiC films with a preferred orientation of β–SiC(111) appeared after further increasing the deposition times (time ≥ 75 min). The change in crystallinity is attributed to increasing roughness with increasing deposition time.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Chiu, C. C., Desu, S. B., and Tsai, C. Y., J. Mat. Res. 8, 2617 (1993).Google Scholar
2. Sheldon, B. W., Besmann, T. M., More, K. L., and Moss, T. S., J. Mat. Res. 8, 1086 (1993).CrossRefGoogle Scholar
3. Langlais, F., Hottier, F., and Cadoret, R., J. Cryst. Growth, 56, 659 (1982).Google Scholar
4. Chiu, C. C. and Desu, S. B., J. Mat. Res. 8, 535544 (1993).Google Scholar
5. Chiu, C. C., Kwok, C. K., and Desu, S. B., in Chemical Vapor Deposition of Refractod Metals and Ceramics II, edited by Besmann, T. M., Gallois, B. M., and Warren, J. W. (Mat. Res. Soc. Symp. Proc. 250, Pittsburgh, PA, 1992) pp. 179185.Google Scholar
6. Schimmel, D. G., in Quick Reference Manual for Silicon Integrated Circuit Technology, edited by Beadle, W. E., Tsai, J. C. C., and Plummer, R. D. (John Wiley & Sons, Inc., New York, 1985), p. 59.Google Scholar
7. Newman, R. C. and Wakefield, J., in Solid State Physics in Electronics and Communication, edited by Desirant, M. and Michels, J. L., p 319328 (1960).Google Scholar
8. Jacobson, K. A., J. Electrochem. Soc. 118, 1001 (1971).Google Scholar
9. Cheng, D. J., Shyy, W. J., Kuo, D. H., and Hon, M. H., J. Electrochem. Soc. 134, 3145 (1987).Google Scholar
10. So, M. G. and Chun, J. S., J. Vac. Sci. Technol. A6, 5 (1988).Google Scholar
11. Carter, C. H. Jr., Davis, R. F., and Nutt, S. R., J. Mat. Res. 1, 811 (1986).CrossRefGoogle Scholar
12. Kim, H. J., Davis, R. F., Cox, X. B., and Linton, R. W., J. Electrochem. Soc. 134, 2269 (1987).Google Scholar
13. Becourt, N., Ponthenier, J. L., Papon, A. M., and Jaussaud, C., Physica B, 185, 79 (1993).Google Scholar
14. Yonehara, T., Smith, H. I., Thompson, C. V., and Palmer, J. E., Appl. Phys. Lett. 45, 631 (1984).Google Scholar
15. Shigeta, M., Fuji, Y., Furukawa, K., Suzuki, A., and Nakajima, S., Appl. Phys. Lett. 55, 1522 (1989).Google Scholar
16. Liaw, P. and Davis, R. F., J. Electrochem. Soc. 132, 642 (1985)Google Scholar
17. Ikoma, K., Yamanaka, M., Yamaguchi, H., and Shichi, Y., J. Electrochem. Soc. 138, 3028 (1991).Google Scholar