Skip to main content Accessibility help
×
Home

Growth of Cubic SiC Thin Films on Silicon from Single Source Precursors by Supersonic Jet Epitaxy

  • Jin-Hyo Boo (a1), Scott A. Ustin (a1), Wilson Ho (a1), H. Paul Maruska (a2), Peter E. Norris (a2), Ig-Hyeon Kim (a3) and Changmo Sung (a3)...

Abstract

Cubic SiC thin films have been grown by supersonic jet epitaxy of single molecular precursors on Si(100), Si(111) and Separation by IMplanted OXygen (SIMOX) silicon on insulator (SOI) substrates at temperatures in the range 780 - 1000 °C. Real-time, in situ optical reflectivity was used to monitor the film growth. Films were characterized by ellipsometry, x-ray diffraction (XRD), and transmission electron microscopy (TEM). Monocrystalline, crack-free epitaxial cubic SiC thin films were successfully grown at 830 °C on carbonized Si(111) substrates using supersonic molecular jets of dimethylisopropylsilane, (CH3)2CHSiH(CH3)2, and diethylmethylsilane, (CH3CH2)2SiHCH3. Highly oriented cubic SiC thin films in the [100] direction were obtained on SIMOX(100) at 900 °C with dimethylisopropylsilane and on Si(100) at 1000 °C with diethylmethylsilane. A carbonized Si(100) surface was found to enhance SiC deposition from diethylmethylsilane at a growth temperature of 950 °C.

Copyright

References

Hide All
1. Yang, C. Y., Rahman, M. M., and Harris, G. L. (eds.), Amorphous and Crystalline Silicon Carbide IV, Springer-Verlag, Berlin, 1992.
2. Ivanov, P. A., and Chelnokov, V. E., Semicond. Sci. Technol. 7, 863 (1992).
3. Palmour, J. W., Edmond, J. A., Kong, H. S., and Carter, C. H. Jr., Physica B 185, 461 (1993).
4. Nelson, W. E., Halden, F. A., and Rosengreen, A., J. Appl. Phys. 37, 333 (1966).
5. Ferry, D. K., Phys. Rev. B 12, 2361 (1975).
6. Muench, W. V. and Pfaffender, I., J. Appl. Phys. 48, 4831 (1977).
7. Phillip, H. P. and Taft, E. A., in Silicon Carbide, A High Temperature Semiconductor, edited by O'Conner, J. R. and Smiltens, J. (Pergamon, New York, 1960), p. 371.
8. Sugii, T., Ito, T., Furumura, Y., Doki, M., Mieno, F., and Maeda, M., IEEE Electron Device Lett. EDL–9, 87 (1988).
9. Bhatnagar, M. and Baliga, B., J. IEEE Trans. Electron Dev. 40, 645 (1993).
10. Nishino, S., Powell, J. A., and Will, H. A., Appl. Phys. Lett. 42, 460 (1983).
11. Yamanaka, M. and Ikoma, Y., Physica B 185, 308 (1993).
12. Boo, J. -H., Yu, K. -S., Lee, M., and Kim, Y., Appl. Phys. Lett. 66, 3486 (1995).
13. Golecki, I., Reidinger, F., and Marti, J., Appl. Phys. Lett. 60, 1703 (1992).
14. Steckl, A. J., Yuan, C., and Li, J. P., and Loboda, M. J., Appl. Phys. Lett. 63, 3347 (1993).
15. Wu, C. H., Jacab, C., Ning, X. J., Nishino, S., and Pirouz, P., J. Crystal Growth 158, 480 (1996).
16. Steckl, A. J., Yuan, C., Tong, Q. -Y., Goesele, U., and Loboda, M. J., J. Electrochem. Soc. 141, L66 (1994).
17. Golecki, I. in Comparison of Thin Film Transistor and SOI Technologies Symposium, edited by Lam, H. W. and Thompson, M. J. (Mater. Res. Soc. Proc. 33, Albuquerque, NM, 1984) pp. 123.
18. Yoder, M., Thin Solid Films 225, 145 (1993); see also S. Zhang, J. Cui, A. Tanaka, and Y. Aoyagi, Appl. Phys. Lett. 64, 1105 (1994); R. Malik and E. Gulari, Appl. Phys. Lett. 68, 3156 (1996); K. A. Brown, S. A. Ustin, L. Lauhon, and W. Ho, J. Appl. Phys. 79, 7667 (1996).
19. Addamiano, A. and Sprague, J. A., Appl. Phys. Lett. 44, 525 (1984).

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed