Hostname: page-component-77c89778f8-9q27g Total loading time: 0 Render date: 2024-07-20T07:27:39.753Z Has data issue: false hasContentIssue false

Growth of CDTE on GaAs and Si Substrates by Organometallic Vapor Phase Epitaxy

Published online by Cambridge University Press:  21 February 2011

Ishwara Bhat*
Affiliation:
Electrical, Computer and Systems Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180
Get access

Abstract

Epitaxial (100) CdTe layers have been grown by organometallic vapor phase epitaxy (OMVPE) on GaAs and Si substrates. A thin layer of CdTe was first grown by atomic layer epitaxy (ALE) on GaAs substrates followed by thicker CdTe layer by conventional organometallic vapor phase epitaxy (OMVPE). This process resulted in high quality (100) CdTe on GaAs substrates. On Si substrates, direct growth of CdTe resulted in only polycrystalline layers. Hence, a thin Ge buffer layer grown at low temperature followed by an interfacial layer of ZnTe was used to get high quality (100) CdTe on Si. The process developed here eliminates the high temperature (>850°C) deoxidation step generally required when Si substrates are used. The CdTe layers were characterized by X-ray diffraction and optical microscopy. X-ray rocking curve with full width at half maximum (FWHM) of about 260 arcsec has been obtained for a 4 um thick CdTe layer. The results presented demonstrate novel techniques to control the hetero-interfaces in order to grow high quality CdTe on GaAs and Si substrates.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Triboulet, R., Tromson-Carli, A., Lorans, D., and Nguyen Duy, T., J. Electron. Mater. 22, 827 (1993).Google Scholar
2 Wood, S., Greggi, J.C., Farrow, R.R.C., Takei, W.J., Shirland, F.A. and Noreiha, A. J., J. Appl. Phys., 55, 4225 (1984).CrossRefGoogle Scholar
3 Johnson, S.M., Vigil, J.A., James, J.B., Cockrum, C.A., Konkel, W.H., Kalisher, M.H., Risser, R.F., Tung, T., Hamilton, W.J., Ahlgren, W.L., and Myrosznyk, J.M., J.Electron, mater., 22, 835, (1993).CrossRefGoogle Scholar
4 Edwall, P.D., Bajaj, J. and Gertner, E.R., J. Vac. Sci. Technol., A8, (1990) 1045.Google Scholar
5 Wang, W.S., Ehsani, H. and Bhat, L., J.Crystal growth, 124, 670 (1992).Google Scholar
6 Ishizaka, A. and Shiraki, Y., J. Electrochem. Soc., 1333 (1986) 666.Google Scholar
7 Grunthaner, P.J., Grunthaner, F.J., Fathauer, R.W., Lin, T.L., Hecht, M.H., Bell, L.D., Kaiser, W.J., Schowengerdt, F.D. and Mazur, J.H., Thin Solid Films, 183, 197 (1989).Google Scholar
8 Kuech, T.F., Maenpaa, M., and Lau, S.S., Appl. Phys. Lett, 39, 245, (1981).Google Scholar
9 Shin, S.H., Arias, J.M., Edwall, D.D., Zandian, M., Pasko, J. G. and DeWames, R.E., J.Vac.Sci.Technol. B10, 1492, (1992).Google Scholar
10 Feldman, R.D., Austin, R.F., Kisker, D.W., Jeffers, K.S., and Bridenbaugh, P.M., Appl. Phys. Lett, 48, 248, (1986).CrossRefGoogle Scholar
11 Cohen-Solal, G., Bailly, F. and Barbe, M., Appl. Phys. Lett., 49, 1519, (1986) and references therein.Google Scholar
12 Bhat, I., unpublished results.Google Scholar
13 Shtrikman, H., Oron, M., Raizman, A. and Cinader, G., L. Electron. Mater., 17, 105, (1988).Google Scholar
14 Wang, W.S., Ehsani, H., and Bhat, I., J. Electron. Mater., 22, 873 (1993).CrossRefGoogle Scholar
15 Goodman, C.H.L. and Pessa, M.V., J.Appl. Phys., 60, R65, (1986).Google Scholar
16 Eaglesham, D.J., Higashi, G.S., and Cerullo, M., Appl. Phys. Lett., 685, 59 (1991).Google Scholar
17 Wolff, S.H., Wagner, S., Bean, J.C., Hull, R., and Gibson, J.M., Appl. Phys. Lett., 55, (1989) 2017.Google Scholar
18 Sporken, R., Sivananthan, S., Mahavadi, K.K., Monfrou, G., Boukerche, M. and Faurie, J.P., Appl. Phys. Lett., 55 (1989) 1879.Google Scholar
19 Sporken, R., Chen, Y.P., Sivananthan, S., Lange, M.D., and Faurie, J.P., J. Vac. Sci. Tech., 10B, (1992) 1405.Google Scholar
20 Korenstein, R., Madisan, P. and Hallock, P., J. Vac. Sci. Technol., 10B (1992) 1370.Google Scholar
21 Chou, R.L., Lin, M.S. and Chou, K.S., J. Cryst. Growth, 94 (1989) 551.Google Scholar
22 de Lyon, T.J., Roth, J.A., Wu, O.K., Johnson, S.M. and Cockrum, C.A., Appl. Phys. Lett., 63 (1993) 818.Google Scholar
23 Takahasi, Y., Ishii, H. and Fujiuaga, K., Appl. Phys. Lett., 57 (1990) 599.Google Scholar
24 Morar, J.F., Meyerson, B.S., Karlsson, U.O., Himpsel, F.J., McFeely, F.R., Rieger, D., Taleb-Ibrahimi, A., and Yarmoff, J.A., Appl. Phys. Lett., 50, 463,(1987).Google Scholar
25 Bhat, I. and Wang, W.S., to appear in Appl. Phys. Lett., January 1994.Google Scholar
26 Joyce, B.A. and Bradley, R.R., Phil. Mag. 15, 1167 (1967).Google Scholar
27 Racanelli, M. and Greve, D.W., Appl. Phys. Lett., 58, 2096 (1991).Google Scholar
28 Wang, W.S. and Bhat, I., to appear in J.Crystal Growth, (1994).Google Scholar
29 Inoue, M., Teramoto, I. and Takayanagi, S., J. Appl. Phys., 33, 2578 (1962).Google Scholar
30 Gaydon, A.G., “Disscociation energies and spectra of Diatomic Molecules”, 3rd ed., Chapman and Hall, London, 1968.Google Scholar