Skip to main content Accessibility help
×
Home

Growth of Branched Carbon Nanostructures in Nanopatterned Surfaces Created by Focused Ion Beam

  • Francisco Solá (a1), Oscar Resto (a2), Azlin Biaggi-Labiosa (a3) and Luis F Fonseca (a4)

Abstract

A method to grow arrays of multibranched carbon nanostructures is explained. We use the electron-beam-induced deposition method using a transmission electron microscope with ∼10−6 Torr vacuum where hydrocarbons are present in the chamber. Saw-tooth nano-patterns were made with a focused ion beam in porous silicon substrates. Due to the dielectric properties of the films the patterns provide the corresponding sites in which high local electric fields appear during irradiation thus allowing the hydrocarbons to become preferentially attracted to those active sites. We found that the adequate ion dose to create well defined saw-tooth nano-patterns was between 8 and 10 nC/μ2 at 30 kv. Electron energy-loss spectroscopy on the branched carbon nanostructures show a high concentration of sp2 sites suggesting that they are made of graphite-like amorphous carbon.

Copyright

References

Hide All
1. Xie, G., Song, M., Furuya, K., Louzguine, D. and Inoue, A., Appl. Phys. Lett. 88, 263120 (2006)
2. Banhart, F., Phys. Rev. E 52, 5156(1995)
3. Mitsuishi, K., Shimojo, M., Han, M. and Furuya, K., Appl. Phys. Lett. 83, 2064 (2003)
4. Solá, F., Resto, O., Biaggi-Labiosa, A. and Fonseca, L.F, Nanotechnology 18, 405308 (2007)
5. Davis, C.A., Silva, S.R.P., Dunin-Borkowski, R.E., Amaratunga, G.A.J., Knowles, K.M and Stobbs, W.M, Phys. Rev. Lett. 75, 4258(1995)
6. Lifshitz, Y., Kasi, S.R, Rabalais, J.W and Eckstein, W., Phys. Rev. B 41, 10468(1990)
7. Silva, S.R.P., Properties of Amorphous Carbon, No. 29 (Inspec:London, UK, 2003) p 4.
8. Cullis, A.G, Canham, L.T and Calcott, P.D.J., J. App. Phys. 82, 909(1997)
9. Canham, L.T, Cullis, A.G, Pickering, C., Dosser, O.D, Cox, T.I and Lynch, T.P, Nature 368, 133(1994)
10. Yuan, J. and Brown, L.M, Micron 31, 515(2000)
11. Balberg, I., Phil. Mag. B 80, 691(2000)
12. Hopman, W.C.L., Ay, F., Hu, W., Gadgil, V. J., Kuipers, L., Pollnau, M. and Ridder, R. M. de, Nanotechnology 18, 195305 (2007)
13. Chelnokov, A., Wang, K., Rowson, S., Garoche, P. and Lourtioz, J.M, Appl. Phys. Lett. 77, 2943 (2000)
14. Resto, O., Fonseca, L.F, Weisz, S.Z, Many, A. and Goldstein, Y. in Microcrystalline and Nanocrystalline Semiconductors, edited by Canham, L.T, Sailor, M.J, Tanaka, K. and Tsai, C.(Mater. Res. Soc. Symp. Proc. 536, Boston, MA, 1999)pp. 229234.
15. Egerton, R. F., Electron Energy-Loss Spectroscopy in the Electron Microscope, 2 nd ed (Plenum Press, New York, 1996) p 383.
16. Titantah, J.T and Lamoen, D., Phys. Rev. B 70, 075115 (2004)

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed