Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-06-20T05:18:11.395Z Has data issue: false hasContentIssue false

Growth of BaTiO3 in Hydrothermally Derived (<100° C) BaTiO3/Polymer Composite Thin Films

Published online by Cambridge University Press:  10 February 2011

David E. Collins
Affiliation:
School of Materials Science and Engineering, Purdue University, West Lafayette, IN 47907.
Elliott B. Slamovich
Affiliation:
School of Materials Science and Engineering, Purdue University, West Lafayette, IN 47907.
Get access

Abstract

Composite BaTiO3/polymer films (<1μm thickness) were processed by the in-situ growth of BaTiO3 particles in a polymer matrix. A solution of a polybutadiene/polystyrene triblock copolymer and titanium diisoproxide bis(ethlyacetoacetate) dissolved in toluene was cast onto a Ag-coated substrate. Subsequent hydrothermal treatment of the films in 1.0 M Ba(OH)2 solutions at 80° C resulted in the nucleation and growth of BaTiO3 within the polymer matrix. The volume fraction/connectivity of BaTiO3 was controlled by varying the relative amounts of titanium precursor and polymer in solution. Growth of BaTiO3 within the polymer was examined by infrared spectroscopy and electron microscopy. The dielectric constant of the composite films increased with BaTiO3 content.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Yamamoto, T., Urabe, K., Banno, H., Jpn. J. Appl. Phys. 32, 4272 (1993).Google Scholar
2. Nagata, K., Kodama, S., Kawasaki, H., Deki, S., Mizuhata, M., J. Appl. Poly. Sci. 56, 1313(1995).Google Scholar
3. Balai, A., Amin, M., Hassan, H., Abd El-Mongy, A., Kamal, B., Ibrahm, K., Phys. Stat. Sol. (a) 144, (k53) (1994).Google Scholar
4. Calvert, P., Broad, R., Contemporary Topics in Polymer Science Vol. 6, 95105, ed. Culbertson, W. (Plenum, New York, 1989).Google Scholar
5. Burdon, J., Calvert, P., Mat. Res. Soc. Symp. Proc. 255, 375 (1992).Google Scholar
6. Slamovich, E., Aksay, I., Mat. Res. Soc. Symp. Proc. 346, 63 (1994).Google Scholar
7. Slamovich, E., Aksay, I., J. Am. Ceram. Soc. 79, (1) 239 (1996).Google Scholar
8. Nyquist, R. and Kagel, R., Infrared of Inorganic Compounds (3800 – 45 cm−1) (Academic Press, New York 1971).Google Scholar
9. Hennings, D., Schreinemacher, S., J. Europ. Ceram. Soc. 9 41 (1992).Google Scholar
10. Nakamoto, K., Infrared and Raman Spectra of Inorganic and Coordination Compounds, 4th ed. (Wiley, New York 1988).Google Scholar
11. McPherson, A., Rub. Chem. Techn. 36 [4], 1230 (1963).Google Scholar
12. Aulagner, E., Buillet, J., Seytre, G., Hantouche, C., Le Gonidee, P., Terzulli, G., IEEE 5th Inter. Conf. Cond. Break. Sol. Dielec., 423 (1995).Google Scholar
13. Gregoria, R., Cestari, M., Bernardino, F., J. Mat. Sci. 31, 2925 (1996).Google Scholar
14. Lu, H., Wills, L., Wessels, B., Zhan, X., Helfrich, J., Ketterson, J., Mat. Res. Soc. Symp. Proc. 310, 319(1993).Google Scholar
15. Liu, W., Cochrane, S., Beckage, P., Knorr, D., Lu, T., Borrego, J., Rymaszewski, E., Mat. Res. Soc. Symp. Proc. 310, 157 (1993).Google Scholar
16. Shintani, Y., Tada, O., J. Appl. Phys. 41, 2376 (1970).Google Scholar
17. Feldman, C., Rev. Sci. Instrum. 26, 463 (1955).Google Scholar
18. Xu, J., Shaikh, A., Vest, R., IEEE Trans. Ultrason. Ferroelec. Freq. Contr. 36, 307 (1989).Google Scholar
19. Pilleux, M. and Fuenzalida, V., Mat. Res. Soc. Symp. Proc. 310, 333 (1993).Google Scholar