Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-26T04:32:42.864Z Has data issue: false hasContentIssue false

Growth Dependence of Thickness, Morphology and Electrical Transport of InN Over Layers on Ain-Nucleated (00.1) Sapphire

Published online by Cambridge University Press:  25 February 2011

T. J. Kistenmacher
Affiliation:
Applied Physics Laboratory, The Johns Hopkins University, Laurel, M D 20723–6099
S. A. Ecelberger
Affiliation:
Applied Physics Laboratory, The Johns Hopkins University, Laurel, M D 20723–6099
W. A. Bryden
Affiliation:
Applied Physics Laboratory, The Johns Hopkins University, Laurel, M D 20723–6099
Get access

Abstract

The seeded-heteroepitaxial growth, morphology and electrical transport properties of InN overlayers deposited by reactive magnetron sputtering on AIN-nucleated (00.1) sapphire have been investigated. For comparison, InN films were grown directly onto (00.1) sapphire under identical experimental conditions. These unseeded films showed a unimodal growth and were a mixture of textured and broadly heteroepitaxial grains. Low Hall mobility and carrier concentration and high resistivity were typical. In contrast, the AIN-nucleated InN overlayers exhibited a bimodal growth, strongly heteroepitaxial grains, and high Hall mobility. A particularly interesting aspect of the films grown on seeded (00.1) sapphire is the preservation of electrical continuity and high Hall mobility even in the limit of InN overlayers with thicknesses only on the order of 20–40Å.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bauer, E. G., et al., J. Mater. Res. 5, 852 (1990).CrossRefGoogle Scholar
2. See, for example, Kern, R., Le Lay, G., and Metois, J. J., in Current Topics in Materials Science, Kaldis, E., ed., (North Holland, Amsterdam, 1979), pg. 130.Google Scholar
3. Amano, H., Sawaki, N., Akasaki, I., and Toyoda, Y., Appl. Phys. Lett. 48, 415 (1988);Google Scholar
Amano, H., Akasaki, I., Hiramatsu, K., Koide, N., and Sawaki, N., Thin Solid Films 163, 415 (1988);CrossRefGoogle Scholar
Akasaki, I., Amano, H., Koide, Y., Hiramatsu, K., and Sawaki, N., J. Cryst. Growth 98, 209 (1989).Google Scholar
4. Wickenden, D. K., Kistenmacher, T. J., Bryden, W. A., Morgan, J. S., and Wickenden, A. E., Proc. Mater. Res. Soc, 221, 167 (1991).CrossRefGoogle Scholar
5. Choi, C. -H., Hultman, L, Choi, W. -A., and Barnett, S. A., J. Vac. Sci. Technol. B 9, 221 (1991).Google Scholar
6. Engel, B. N., England, C. D., Van Leeuwen, R. A., Wiedmann, M. H., and Falco, C. M., Phys. Rev. Lett. 67, 1910 (1991).Google Scholar
7. Lee, C. H., He, H., Lamelas, F., Vavra, W., Uher, C., and Clarke, R., Phys. Rev. Lett. 62, 653 (1989).CrossRefGoogle Scholar
8. Lee, C. H., Farrow, R. F. C., Lin, C. J., Marinerom, E. E. and Chien, C. J., Phys. Rev. B 42, 11384 (1990).CrossRefGoogle Scholar
9. Miller, K. T. and Lange, F. F., J. Mater. Res. 6, 2387 (1991).Google Scholar
10. Kistenmacher, T. J. and Bryden, W. A., Appl. Phys. Lett. 59, 1844 (1991);Google Scholar
Bryden, W. A., Morgan, J. S., Fainchtein, R., and Kistenmacher, T. J., Thin Solid Films, in press.Google Scholar