Hostname: page-component-7c8c6479df-fqc5m Total loading time: 0 Render date: 2024-03-29T14:58:55.517Z Has data issue: false hasContentIssue false

Growth Conditions Effect on the Structure and Optical Properties of ZnO Thin Films Synthesized by rf magnetron Sputtering

Published online by Cambridge University Press:  31 January 2011

Luis Angelats-Silva
Affiliation:
langelats@yahoo.com, Universidad Nacional de Trujillo, Physics, Trujillo, Peru
Maharaj S. Tomar
Affiliation:
maharajs.tomar@upr.edu, University of Puerto Rico, Department of Physics, Mayaguez, Puerto Rico
Oscar Perales-Perez
Affiliation:
operalesperez@yahoo.com, University of Puerto Rico, Department of Engineering Science & Materials, Mayaguez, Puerto Rico
S. P. Singh
Affiliation:
singh@uprm.edu, U of Puerto Rico at Mayaguez, Engineering Science and Materials, Mayaguez, Mayaguez, Puerto Rico
Segundo R. Jauregui-Rosas
Affiliation:
segundorj@yahoo.es, Universidad Nacional de Trujillo, Physics, Trujillo, Peru
Get access

Abstract

We report a systematic study of the influence of the target-substrate distance and rf power on the structural and optical properties of ZnO thin films grown by rf magnetron sputtering in Ar atmosphere from ZnO sputtering target. Sharp (002) peak showed by XRD indicates a c-axis crystalline growth of ZnO films. Growth rate remained almost constant for short target-substrate distances. However, the grain size increases with the rf power decreasing the compressive stress in ZnO films. As-grown ZnO films have average transmittance more than 80% in the visible region. Optical bandgap (Eg) increases from 3.18 to 3.27 eV as increase the target-substrate distance probably due to low stress compression in ZnO films. In addition, when rf power is above 100 W, the optical band gap increases as increase of the stress compression.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Karpina, V. A. et al. , Cryst. Res. Technol. 39, No. 11, 980992 (2004).Google Scholar
2. Pakhomov, A.B. et al. , J. Appl Phys. 95, 7393(2004).Google Scholar
3. Heo, Y. W. et al. , Appl. Phys. Lett. 84, 2292(2004).Google Scholar
4. Ramachandran, S. et al. , Appl. Phys. Lett. 80, 4561(2002).Google Scholar
5. Jung, S.W. et al. , Appl. Phys. Lett. 80, 4561(2002).Google Scholar
6. Garcia, P.F. et al. , Appl. Phys. Lett. 82, 1117(2003).Google Scholar
7. Kang, D.J. et al. , Thin Solid Films, 475 160165 (2005).Google Scholar
8. Zheng-Bin, G. et al. , J. Appl. Phys, 98, 053908–1, 4(2005).Google Scholar
9. Schiller, S. et al. , Vakuum-Technik, 27, 51–5 (1978).Google Scholar
10. Schiller, S., S., et al., Vakuum-Technik, 27, 7586 (1978).Google Scholar
11. Klaus, E. J. Phys D: Appl. Phys, 33 R17–R32 (2000).Google Scholar
12. Kim, K. Ho et al. , J. Appl. Phys. 81(12), 77647772 (1997).Google Scholar
13. Cebulla, R. et al. , J. Appl. Phys. 83(2), 10871095 (1998).Google Scholar
14. Kang, D. J. et al. , Thin solid films 475, 160165 (2005).Google Scholar
15. Gupta, V. and Mansingh, A. J. Appl. Phys, 80(2), 15 July 1996.Google Scholar
16. Mass, J. et al. , Materials Science and Engineering, B103 915 (2003).Google Scholar
17. Wang, Y. G. et al. , J. Appl. Phys, 94, (3), 15971604 (2003).}Google Scholar
18. Brandenburg, K. and Putz, H. Match! Phase identification from powder diffraction, crystal Impact (2003-2006), Postfach 12 51, D-53002 Bonn Germany.Google Scholar