Hostname: page-component-77c89778f8-n9wrp Total loading time: 0 Render date: 2024-07-17T07:58:39.626Z Has data issue: false hasContentIssue false

Growth and Surface Reconstructions of AlN(0001) Films

Published online by Cambridge University Press:  01 February 2011

C. D. Lee
Affiliation:
Dept. Physics, Carnegie Mellon University, Pittsburgh, PA 15213
Y. Dong
Affiliation:
Dept. Physics, Carnegie Mellon University, Pittsburgh, PA 15213
R. M. Feenstra
Affiliation:
Dept. Physics, Carnegie Mellon University, Pittsburgh, PA 15213
J. E. Northrup
Affiliation:
Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, California 94304
J. Neugebauer
Affiliation:
University of Paderborn, Warburger Str. 100, 33098 Paderborn, Germany
Get access

Abstract

The growth and surface reconstructions of AlN(0001) films were studied. For moderately Al-rich surfaces, the 2×6 structure is commonly observed in reflection high energy electron diffraction. It is found that this pattern consists of 2√3×2√3-R30° and 5√3×5√3-R30° reconstructions according to scanning tunneling microscopy. Similar to the Ga-rich GaN(0001) surface, these structures are determined to contain 2–3 monolayers of excess Al terminating the surface. Based on first-principles theory the structures are believed to contain a laterally contracted Al layer. At higher Al coverage a thick, flat Al film is found to form on the surface. A high density of growth spirals (associated with threading dislocations having full or partial screw character) is found to be present on the surface, although this density decreases with increasing growth temperature.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Feenstra, R. M., Northrup, J. E., and Neugebauer, J., MRS Internet J. Nitride Semicond. Res. 7, 3 (2002).Google Scholar
[2] Johnson, M. A. L., Fujita, S., Rowland, W. H., Bowers, K. A., Hughes, W. C., He, Y. W., El-Masry, N. A., Cook, J. W., Schetzina, J. F., Ren, J., and Edmond, J. A., J. Vac. Sci. Technol. B 14, 2349 (1996).Google Scholar
[3] Hellman, E. S., Buchanan, D. N. E., and Chen, C. H., MRS Internet J. Nitride Semicond. Res. 3, 43(1998).Google Scholar
[4] Bourret, A., Barski, A., Rouvière, J. L., Renaud, G., and Barbier, A., J. Appl. Phys. 83, 2003 (1998).Google Scholar
[5] King, S. W., Ronning, C., Davis, R. F., Benjamin, M. C. and Nemanich, R. J., J. Appl. Phys. 84, 2086 (1998).Google Scholar
[6] Schenk, H. P. D., Kipshidze, G. D., Kaiser, U., Fissel, A., Kräusslich, J., Schulze, J., and Richter, W., J. Cryst. Growth 200, 45 (1999).Google Scholar
[7] Lebedev, V., Schröter, B., Kipshidze, G., and Richter, W., J. Cryst. Growth 207, 266 (1999).Google Scholar
[8] Davis, C. S., Novikov, S. V., Cheng, T. S., Campion, R. P., and Foxon, C. T., J. Cryst. Growth 226, 203 (2001).Google Scholar
[9] Onojima, N., Suda, J., and Matsunami, H., Appl. Phys. Lett. 80, 76 (2002); J. Cryst. Growth 237–239, 1012 (2002).Google Scholar
[10] Smith, A. R., Feenstra, R. M., Greve, D. W., Neugebauer, J., and Northrup, J. E., Phys. Rev. Lett. 79, 3934 (1997).Google Scholar
[11] Lee, C.D., Dong, Y., Feenstra, R.M., Northrup, J.E., Neugebauer, J., Phys. Rev. B 68, xxxx (2003).Google Scholar
[12] Lebedev, V., Schröter, B., Kipshidze, G., and Richter, W., J. Cryst. Growth 207, 266 (1999).Google Scholar
[13] Koblmueller, G., Averbeck, R., Geelhaar, L., Riechert, H., Hösler, W., and Pongratz, P., J. Appl. Phys. 93, 9591 (2003).Google Scholar
[14] Northrup, J. E., Di Felice, R., and Neugebauer, J., Phys. Rev. B 55, 13878 (1997).Google Scholar