Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-06-28T01:39:32.873Z Has data issue: false hasContentIssue false

Growth and Properties of Ceramic thin Films Processed by In-Situ Laser Deposition Technique

Published online by Cambridge University Press:  26 February 2011

S. M. Kanetkar
Affiliation:
On leave from Department of Physics, University of Poona, Pune-411007, INDIA.
S. Sharan
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC-27695-7916
P. Tiwari
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC-27695-7916
J. Matera
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC-27695-7916
J. Narayan
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC-27695-7916
Get access

Abstract

Good quality ceramic thin films of yttria-stabilized zirconia (YSZ), MgO, BN and TiN were grown on single crystal silicon with (100) orientation using in-situ pulsed laser physical vapor deposition (LPVD) technique.Laser deposition parameters were optimized and the resulting thin films were characterized by X-ray diffraction ,Rutherford backscattering spectrometry and transmission electron microscopy (plan and cross section). All the films were found to be polycrystalline with a texture. The absence of interfacial reaction and smooth interface on the atomic scale are the main features observed in these oxides and nitrides thin films on Si (100) substrate.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Tummala, R.R., Ceramic Bull., 67, 752 (1988).Google Scholar
2. Fisher, G., Ceramic Bull., 65, 622 (1986).Google Scholar
3. Fork, D.K., Fenner, D.B., Barton, R.W., Phillips, J.M., Connell, G.A.N., Boyce, J.B. and Geballe, T. H., Appl. Phys. Lett. 57, 1161 (1990).Google Scholar
4. Tiwari, P., Kanetkar, S. M., Sharan, S. and Narayan, J., Appl. Phys. Lett. 57, 1578 (1990).Google Scholar
5. Narayan, J., Biunno, N., Singh, R., Holland, O. W. and Auciello, O., Appl. Phys. Lett. 51, 1845 (1987).Google Scholar
6. Zehner, D.M., White, C.W., and Ownby, G.W., Appl. Phys. Lett., 36, 56 (1980).Google Scholar
7. Lee, J. W., Shlesinger, T. E., Stamper, A. K., Migliuolo, M., Greve, D. W. and Laughlie, E., J. Appl. Phys. 64, 6502 (1988).Google Scholar
8. Sharan, S., Tiwari, P., Kanetkar, S. M. and Narayan, J. (unpublished)Google Scholar
9. Arya, S. P. S. and D’Amico, A., Thin Solid Films, 157, 267 (1988).Google Scholar
10. Sayer, M., Sreenivas, K., Science 247, 1056 (1990).Google Scholar
11. Mieno, M. and Yoshida, T., Jap. J. Appl. Phys. 29, L1175 (1990).Google Scholar
12. Shapoval, S. Y., Petrashow, V. T., Popov, O. A., Westner, A. O., Yodev, M. D. and Lok, C. K.C, Appl. Phys. Lett. 57, 1885 (1990).Google Scholar
13. Doll, L., Sell, J. A., Salamanca-Riba, L. and Ballal, A. K., MRS spring meeting 1990, session N, San Francisco.Google Scholar
14. Kanetkar, S.M., Matera, J., Chen, X., Pramanick, S., Tiwari, P., Narayan, J., Pfeiffer, G. and Paesler, M., J. Electronic Materials (To apper in February 1991 issue).Google Scholar
15. Wittmer, M., Appl. Phys. Lett. 37, 540 (1980).Google Scholar
16. Cheung, N. W., Von Seefeld, H., Nicolet, M. A., Hoand, F., and lies, P., J. Appl. Phys. 52, 4297 (1981).Google Scholar
17 Mandl, M., Hoffman, H., and Kucher, P., J. Appl. Phys. 68, 2127 (1990).Google Scholar
18 Biunno, N., Narayan, J., Hofmeister, S.K., Srivatsa, A.R. and Singh, R.K., Appl. Phys. Lett. 54, 1519 (1989)Google Scholar
19 Biunno, N., Narayan, J., Srivatsa, A.R. and Holland, O.W. Appl. Phys.Lett. 55, 405 (1989).Google Scholar