Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-19T02:14:16.426Z Has data issue: false hasContentIssue false

Growth and Overgrowth of Ge/Si Quantum Dots: An Observation by Atomic Resolution HAADF-STEM Imaging

Published online by Cambridge University Press:  01 February 2011

Dan Zhi
Affiliation:
Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ, UK
Paul A. Midgley
Affiliation:
Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ, UK
Rafal E. Dunin-Borkowski
Affiliation:
Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ, UK
Bruce A. Joyce
Affiliation:
Department of Physics, Imperial College, London SW7 2AZ, UK
Don W. Pashley
Affiliation:
Department of Materials, Imperial College, London SW7 2AZ, UK
Andrew L. Bleloch
Affiliation:
UK SuperSTEM Laboratory, Daresbury, Cheshire WA4 4AD
Peter J. Goodhew
Affiliation:
Department of Engineering, University of Liverpool, Liverpool L69 3GH, UK
Get access

Abstract

The formation of self-assembled quantum dots (QD) is of increasing interest for applications in optical, nanoelectronic, biological and quantum computing systems. From the perspective of fabrication technology, there are great advantages if the whole device can be made using a single Si substrate. Furthermore, GeSi is a model semiconductor system for fundamental studies of growth and material properties. In practice, as the MBE growth of heterostructures is inherently a non-equilibrium process, the formation of self-assembled nanostructures is both complex and sensitive to growth and overgrowth conditions. The morphology, structure and composition of QDs can all change during growth. It is therefore crucial to understand their structures at different stages of growth at the atomic scale. Here, the characterization of QD growth using high-resolution high angle annular dark field (HAADF) scanning transmission electron microscopy (STEM) imaging is presented. Both the formation of uncapped QDs and the effect of the encapsulation are investigated, and the morphological and compositional evolution of the QDs and wetting layers are observed directly at the atomic scale for the first time. During encapsulation, the Ge content in the centres of the QD remains unchanged, despite significant intermixing, lateral spreading and a laterally inhomogeneous Ge distribution inside the Ge QD. The initial non-uniform wetting layer for the uncapped Ge QD becomes uniform after encapsulation, and a 3-monolayer-thick core with ∼ 60% Ge content is formed in the 2 nm-thick wetting layer with an average Ge content of ∼ 30%. The results were obtained by direct analysis of the Z-contrast STEM imaging without involving complex image simulations.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Mo, Y. –W., Savage, D. E., Swartzentruber, B. S., Lagally, M. G., Phys. Rev. Lett. 65, 1020 (1990).Google Scholar
2. Kamins, T. I., Carr, E. C., Williams, R. S., Rosner, S. J., J. Appl. Phys. 81, 211 (1997).Google Scholar
3. Medeiros-Ribeiro, G., Bratkovski, A. M., Kamins, T. I., Ohlberg, D. A. A., Williams, R. S, Science 279, 353 (1998).Google Scholar
4. Ross, F. M., Tromp, R. M., Reuter, M. C., Science 286, 1931 (1999).Google Scholar
5. Schmidt, O. G., Eberl, K., Phys. Rev. B 61, 13721 (2000).Google Scholar
6. Vailionis, A., Cho, B., Glass, G., Desjardins, P., Cahill, D. G., Greene, J. E., Phys. Rev. Lett. 85, 3672 (2000).Google Scholar
7. Cockayne, D. J. H., Liao, X. Z., Zou, J., Inst. Phys. Conf. Ser. 169, 77 (2001).Google Scholar
8. Tersoff, J., Phys. Rev. Lett. 81, 3183 (1998).Google Scholar
9. Tersoff, J., Spencer, B. J., Rastelli, A., von Känel, H., Phys. Rev. Lett. 89, 196104–1 (2002).Google Scholar
10. Lang, C., Nguyen-Manh, D., Cockayne, D. J. H., J. Appl. Phys. 94, 7067 (2003).Google Scholar
11. Bruls, D. M., Koenraad, P. M., Salemink, H. W. M., Wolter, J. H., Hopkinson, M., Skolnick, M. S., Appl. Phys. Lett. 82, 3758 (2003).Google Scholar
12. Liao, X. Z., Zou, J., Duan, X. F., Cockayne, D. J. H., Leon, R., Lobo, C., Phys. Rev. B 58, R4235 (1998).Google Scholar
13. Liao, X. Z., Zou, J., Duan, X. F., Cockayne, D. J. H., Jiang, Z. M., Wang, X., J. Appl. Phys. 90, 2725 (2001).Google Scholar
14. Liao, X. Z., Zou, J., Cockayne, D. J. H., Wan, J., Jiang, Z. M., Jin, G., Wang, K. L., Phys. Rev. B. 65, 153306–1 (2002).Google Scholar
15. Walther, T., Cullis, A. G., Norris, D. J., Hopkinson, M., Phys. Rev. Lett. 86, 2381 (2001).Google Scholar
16. Floyd, M., Zhang, Y., Driver, K. P., Drucker, J., Crozier, P. A., Appl. Phys. Lett. 82, 1473 (2003).Google Scholar
17. Pennycook, S. J., Jesson, D. E., Phys. Rev. Lett. 64, 938 (1990).Google Scholar
18. Jesson, D. E., Pennycook, S. J., Baribeau, J. –M., Phys. Rev. Lett. 66, 750 (1991).Google Scholar
19. Nellist, P. D., Pennycook, S. J., Ultramicroscopy 78, 111 (1999).Google Scholar
20. Schmidt, O. G., Jin-Philipp, N. Y., Lange, C., Denker, U., Eberl, K., Schreiner, R., Grabeldinger, H., Schweizer, H., Appl. Phys. Lett. 77, 4138.Google Scholar
21. Eaglesham, D. J., Cerullo, M., Phys. Rev. Lett. 64, 1943 (1990).Google Scholar