Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-06-30T22:32:03.026Z Has data issue: false hasContentIssue false

Growth and Optical Properties of GaP, GaP@GaN and GaN@GaP Core-shell Nanowires

Published online by Cambridge University Press:  15 February 2011

Hung-Min Lin
Affiliation:
Department of Chemistry, National Taiwan Normal University.
Jian Yang
Affiliation:
Department of Chemistry, National Taiwan Normal University.
Yong-Lin Chen
Affiliation:
Institute of Condensed Matter, National Taiwan University.
Yau-Chung Liu
Affiliation:
Department of Chemistry, National Taiwan Normal University.
Kai-Min Yin
Affiliation:
Department of Engineering and System Science, National Tsinghua University
Ji-Jung Kai
Affiliation:
Department of Engineering and System Science, National Tsinghua University
Fu-Rong Chen
Affiliation:
Department of Engineering and System Science, National Tsinghua University
Li-Chyong Chen
Affiliation:
Institute of Condensed Matter, National Taiwan University.
Yang-Fang Chen
Affiliation:
Institute of Condensed Matter, National Taiwan University.
Chia-Chun Chen*
Affiliation:
Department of Chemistry, National Taiwan Normal University. Institute of Atomic and Molecular Sciences, Academia Sinica.
*
*To whom the correspondence should be addressed. E-mail: t42005@cc.ntnu.edu.tw
Get access

Abstract

High-quality GaP, GaP@GaN and GaN@GaP nanowires were grown by a convenient vapor deposition technique. The wire-like and two-layers structures of GaP@GaN and GaN@GaP core-shell nanowires were clearly resolved using X-ray powder diffraction and high-resolution transmission electron microscopy (HRTEM) and their growth directions were identified. Photoluminescence intensity of GaP@GaN nanowires increased as temperature increased. The result was interpreted by the piezoelectric effect induced from lattice mismatch between two semiconductor layers. An unexpected peak at 386 cm-1 was found in the Raman spectra of GaN@GaP and assigned to a surface phonon mode due to the interface. Detailed synthetic conditions and possible growth mechanisms of those nanowires were proposed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

(1) Bernard, G., Group III nitride semiconductor compounds:physics and applications, (Oxford University Press, 1998).Google Scholar
(2) Nakamura, S. and Chichibu, S. F., Introduction to nitride semiconductor blue lasers and light emitting diodes, (Taylor & Francis Press, 2000).Google Scholar
(3) Johnson, J., Choi, H. J., Knutsen, K. P., Schaller, R. D., Saykally, R. J. and Yang, P., Nature Materials, 1, 101 (2002).Google Scholar
(4) Duan, X., Huang, Y., Cui, Y., Wang, J. and Lieber, C. M., Nature, 409, 66 (2001).Google Scholar
(5) Cui, Y., Wei, Q. Q., Park, H. K. and Lieber, C.M., Science, 293, 1289 (2001).Google Scholar
(6) Duan, X. F. and Lieber, C.M., Adv. Mater., 12, 298 (2000).Google Scholar
(7) (a) Kim, Y. H., Jun, Y. W., Jun, B. H., Lee, S. M. and Cheon, J., J. Am. Chem. Soc., 124, 13656 (2002). (b) H. W. Seo, S. Y. Bae, J. Park, H. Yang and S. Kim, Chem. Commun. 2564 (2002).Google Scholar
(8) Chen, C. C., Yeh, C. C., Chen, C. H., Yu, M. Y., Liu, H. L., Wu, J. J., Chen, K. H., Chen, L. C., Peng, J. Y. and Chen, Y. F., J. Am. Chem. Soc., 123, 2791 (2001).Google Scholar
(9)Shi, W., Zheng, Y., Wang, N., Lee, C. S. and Lee, S. T., Adv. Mater., 13, 591 (2001).Google Scholar
(10) Einspruch, N. G.; Frensley, W. R. Heterostructures and quantum devices, (Academic Press, 1994).Google Scholar
(11) Kittel, C. Introduction to solid state physics, 7th ed., (Wiley, 1996). (b) Peter, S. Z. Quantum well laser, (Academic press, 1993).Google Scholar
(12) (a) Cao, Y. W. and Banin, U., Angew. Chem. Int. Ed. 38, 3692 (1999). (b) X. Peng, M. C. Schlamp, A. V. Kadavanich and A. P. Alivisatos J. Am. Chem. Soc. 119, 7019 (1997).Google Scholar
(13) (a) Gudiksen, M. S., Lauhon, L. J., Wang, J., Smith, D. C. and Lieber, C. M., 415, 617 (2002). (b) B. J. Ohlsson, M. H. Magnusson, M. T. Bjork, L. R. Wallenberg, K. Deppert and L. Samuelson, Appl. Phys. Lett., 79, 3335 (2001).Google Scholar
(14) Wu, Y., Fan, R. and Yang, P., Nano. Lett. 2, 83 (2002).Google Scholar
(15) (a) Chen, C. C., Yeh, C. C., Liang, C. H., Lee, C. C., Chen, C. H., Yu, M. Y., Liu, H. L., Chen, L. C., Lin, Y. S., Ma, K. J. and Chen, K. H., J. Phys. Chem. Solids, 62, 1577 (2001). (b) W. Han and A. Zettl, Adv. Mater., 14, 1560 (2002).Google Scholar
(16) Lauhon, L. J., Gudiksen, M. S., Wang, C. L. and Lieber, C. M., Nature, 420, 57 (2002).Google Scholar
(17) Lin, H. M., Chen, Y. L., Yang, J., Liu, Y. C., Yin, K. M., Kai, J. J., Chen, F. R., Chen, L. C., Chen, Y. F. and Chen, C. C., Nano. Lett., 3, 537 (2003).Google Scholar
(18) Chen, Y. L., Huang, L. Y., Chen, Y. R.;Yu, M. Y. and Chen, C. C., Phys. Rev. B, in press.Google Scholar
(19) Deus, P., Voland, U. and Schneider, H. A., Phys. Stat. Solidi A 80, K29 (1983).Google Scholar
(20) Sheleg, A. U., Savastenko, V. A. and Vesti, A., Nauk BSSR, Ser. Fiz. Mat. Nauk 3, 126 (1976).Google Scholar
(21) Wu, J. J., Wong, T. C. and Yu, C. C., Adv. Mater. 14, 1643 (2002).Google Scholar