Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-25T13:18:52.533Z Has data issue: false hasContentIssue false

Growth and Characterization of GaPNAs on Si

Published online by Cambridge University Press:  01 February 2011

John Geisz
Affiliation:
National Renewable Energy Laboratory, Golden, CO 80401, U.S.A.
J. M. Olson
Affiliation:
National Renewable Energy Laboratory, Golden, CO 80401, U.S.A.
W. E. McMahon
Affiliation:
National Renewable Energy Laboratory, Golden, CO 80401, U.S.A.
T. Hannappel
Affiliation:
Hahn-Meitner Institute Berlin, Germany
K. Jones
Affiliation:
National Renewable Energy Laboratory, Golden, CO 80401, U.S.A.
H. Moutinho
Affiliation:
National Renewable Energy Laboratory, Golden, CO 80401, U.S.A.
M. M. Al-Jassim
Affiliation:
National Renewable Energy Laboratory, Golden, CO 80401, U.S.A.
Get access

Abstract

The dilute nitrogen alloy GaPNAs can be lattice matched to silicon with band gaps ranging from 2.3 eV to less than 1.7eV making it of special interest for photovoltaic applications. We have studied the growth and structural quality of the alloy grown on vicinal Si(001) and GaP(001) substrates by MOCVD. Using a particular nucleation scheme, we have deposited 1-μm thick layers that are crack-free and exhibit narrow x-ray line widths. The FWHM of the (004) x-ray reflection from a GaP1−xNx epilayer decreases dramatically from ∼300 arcsec for x=0 to 18 arcsec for x = 0.021. The band gap of this alloy is 1.96 eV. With the addition of As (and more N), the x-ray line widths tend to increase slightly to 27 arcsec.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Fan, J. C. C., Tsaur, B.-Y., and Palm, B. J., in 16th IEEE PVSC, 1982), p. 692.Google Scholar
2 Olson, J. M., Al-Jassim, M. M., Kibbler, A., et al., Journal of Crystal Growth 77, 515 (1986).Google Scholar
3 Al-Jassim, M. M., Blakeslee, A. E., Jones, K. M., et al., in Microscopy of Semiconductor Materials (Inst. Phys. Conf. Ser., Oxford, 1987), Vol. 87, p. 99.Google Scholar
4 Pearton, S. J., Wu, C. S., Stavola, M., et al., Appl. Phys. Lett. 51, 496 (1987).Google Scholar
5 Ueda, O., Soga, T., Jimbo, T., et al., Journal of Crystal Growth 106, 491 (1990).Google Scholar
6 Soga, T., Nishikawa, H., Jimbo, T., et al., Journal of Crystal Growth 107, 479 (1991).Google Scholar
7 Olson, J. M., Gessert, T., and Al-Jassim, M. M., in 18th IEEE Photovoltaic Specialists Conference (IEEE, 1985), p. 552.Google Scholar
8 Olson, J. M., Kurtz, S. R., Kibbler, A. E., et al., Appl Phys Lett 56, 623 (1990).Google Scholar
9 Geisz, J., Friedman, D. J., and Kurtz, S., in 29th IEEE Photovoltaic Specialists Conference (IEEE, New York, New Orleans, Louisiana, 2002), Vol. 29th, p. 864.Google Scholar
10 Geisz, J. F., Reedy, R. C., Keyes, B. M., et al., J Cryst Growth 259, 223 (2003).Google Scholar
11 Yonezu, H., Semicond Sci Technol 17, 762 (2002).Google Scholar
12 Weyers, M., Sato, M., and Ando, H., Jpn. J. Appl. Phys. 31, 853 (1992).Google Scholar
13 Matthews, J. W. and Blakeslee, A. E., J. Cryst. Growth 27, 118 (1974).Google Scholar
14 Suzuki, T., Mori, M., Jiang, Z. K., et al., Jpn J Appl Phys Pt 1 31, 2079 (1992).Google Scholar
15 Biwa, G., Yaguchi, H., Onabe, K., et al., J Cryst Growth 190, 485 (1998).Google Scholar
16 Kipp, L., Biegelsen, D. K., Northrup, J. E., et al., Phys Rev B 76, 2810 (1996).Google Scholar
17 Ourmazd, A. and Schroeter, W., Appl Phys Lett 45, 781 (1984).Google Scholar
18 Correia, A., Pichaud, B., Lhorte, A., et al., J. Appl. Phys. 79, 2145 (1996).Google Scholar