Skip to main content Accessibility help

Group theoretical analysis of nitrogen-vacancy center’s energy levels and selection rules

  • J. R. Maze (a1) (a2), A. Gali (a3) (a4), E. Togan (a1), Y. Chu (a1), A. Trifonov (a1), E. Kaxiras (a5) and M. D. Lukin (a1)...


We use a group theoretical approach to model the nitrogen-vacancy defect in diamond. In our analysis we clarify several properties of this defect that have been source of controversy such as the ordering of the singlets and the mechanism that leads to spin mixing in the excited state of this defect. In particular, we demonstrate that the ordering of the ground state configuration (e2) is {3A2, 1E, 1A1} and that the spin-spin interaction causes the mixing in the excited state. In addition, we analyze the angular momentum and spin properties of the excited state structure that enables a spin photon entanglement scheme that has been recently demonstrate experimentally. Our description is general and it can be easily applied to other defects in solid-state systems.


Corresponding author


Hide All
1. Wrachtrup, J. & Jelezko, F. Journal of Physics-Condensed Matter 18, S807S824 (2006).
2. Taylor, J. et al. . Nat. Phys. 4, 810816 (2008).
3. Degen, C. L. Appl. Phys. Lett. 92, 243111 (2008).
4. Maze, J. R. et al. . Nature 455, 644647 (2008).
5. Balasubramanian, G. et al. . Nature 455, 648651 (2008).
6. Rittweger, E., Han, K.Y., Irvine, S.E., Eggeling, C. & Hell, S.E. Nat. Phot. 3, 144147 (2009).
7. Togan, E. et al. . Nature 466, 730734 (2010).
8. Santori, C. et al. . Phys. Rev. Lett. 97, 247401 (2006).
9. Manson, N. B., Harrison, J. P. & Sellars, M. J. Phys. Rev. B 74, 104303 (2006).
10. Batalov, A. et al. . Phys. Rev. Lett. 102, 195506 (2009).
11. Lenef, A. & Rand, S. Phys. Rev. B 53, 1344113445 (1996).
12. Rogers, L., McMurtrie, R., Sellars, M., Manson, N. New Journal of Physics 11, 063007 (2009).
13. Tamarat, P. et al. . New Journal of Physics 10, 045004 (2008).
14. Tinkham, M. Group theory and quantum mechanics (Courier Dover Publications, 2003).
15. Maze, J. R. PhD Thesis, Harvard University (2010).
16. Maze, J.R., Gali, A., Togan, E., Chu, Y., Trifinov, A., Kaxiras, E. and Lukin, M.D. arXiv:1010.1338v1 [quant-ph] (2010).
17. Goss, J. P., Jones, R., Breuer, S., Briddon, P. & Oberg, S. Phys. Rev. Lett. 77, 3041 (1996). URL
18. Gali, A., Fyta, M. & Kaxiras, E. Phys. Rev. B 77, 155206 (2008).
19. Stoneham, A. Theory of defects in solids: electronic structure of defects in insulators and semiconductors (Oxford University Press, 2001).10.1093/acprof:oso/9780198507802.001.0001
20. Griffith, J. S. The theory of transition-metal ions (Cambridge University Press, 1961).
21. Jacobs, P. Group theory with applications in chemical physics (Cambridge, 2005).
22. The contact term does not contribute due to the Pauli exclusion principle.
23. Recently, this was indirectly experimentally confirmed. The lower energy state A1 was observed to have a shorter lifetime than the state A2 7.. This is as expected since the state A1 decays non-radiatevely to the singlet 1 A1 via non-axial spin-orbit.
24. Blinov, B. B., Moehring, D. L., Duan, L.-M. & Monroe, C. Nature 428, 153157 (2004).


Group theoretical analysis of nitrogen-vacancy center’s energy levels and selection rules

  • J. R. Maze (a1) (a2), A. Gali (a3) (a4), E. Togan (a1), Y. Chu (a1), A. Trifonov (a1), E. Kaxiras (a5) and M. D. Lukin (a1)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed