Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-05-12T17:19:50.073Z Has data issue: false hasContentIssue false

Group III-Nitride Based VCSEL for Applications at the Wavelength of 400nm

Published online by Cambridge University Press:  17 March 2011

M. Linnik
Affiliation:
Department of Materials and Nuclear Engineering and Materials Research Science and Engineering Center, University of Maryland, College Park MD 20742
A. Christou
Affiliation:
Department of Materials and Nuclear Engineering and Materials Research Science and Engineering Center, University of Maryland, College Park MD 20742
Get access

Abstract

Short wavelength Vertical Cavity Surface Emitting Laser based on the group III nitrides, GaN, AlN, InN, and their ternary alloys is reported. Optical properties such as band gap and index of refraction of the nitride binary compound were calculated based on the fitting of the experimental data and the first principle calculations. The ternary alloy optical properties were determined in the same manner but based on the binary compound data. The active region containing InGaN strained multiple quantum wells is formed between two Distributed Bragg Reflectors. GaInN/AlN material systems are shown to be the most suitable for highly reflective Bragg mirrors with minimized number of layers. LiGaO2 substrate is proposed for GaN growth due to its small lattice mismatch with GaN (about 0.9%) and its ability to provide a good thermal matching between the two materials. We report VCSEL calculations on threshold current and emission spectra.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kang, S., Doolittle, W., and Brown, A., Appl. Phys. Lett. 74(22), 3380 (1999).Google Scholar
2. Ambacher, O., Dimitrov, R., Stutzmann, M., Foutz, B., Murphy, M., Shealy, J., Weimann, N., Chu, K., Chumbes, M., Green, B., Sierakowski, A., Schaff, W., and Eastmann, L., Phys. Stat. Solid. (b) 216, 381 (1999).Google Scholar
3. Ng, H., Moustakas, T., and Chu, S., Appl. Phys. Lett. 76(20), 2818 (2000).Google Scholar
4. Redwing, J., Loeber, D., Anderson, N., Tischler, M., and Flynn, J., Appl. Phys. Lett. 69(1), 1 (1996).Google Scholar
5. Langer, R., Barski, A., Simon, J., Pelekanos, N., Konovalov, O., Andre, R., and Dang, L., Appl. Phys. Lett. 74(24), 3610 (1999).Google Scholar
6. Song, Y., Zhou, H., Diagne, M., Ozden, I., Vertikov, A., Nurmikko, A., Karter-Coman, C., Kern, R., Kish, F., and Krames, R., Appl. Phys. Lett. 74(23), 3441 (1999).Google Scholar
7. Ng, H., Doppalapudi, D., Iliopoulos, E., and Moustakas, T., Appl. Phys. Lett. 74(7), 1036 (1999).Google Scholar
8. Fritz, I., and Drummond, T., Electron. Lett. 31(1), 68 (1995).Google Scholar
9. Song, Y., Zhou, H., Diagne, M., Naurmikko, A., Schneider, R., Kuo, C., Krames, M., Kern, R., Carter-Coman, C., and Kish, F., Appl. Phys. Lett. 76(13), 1662 (2000).Google Scholar
10. Someya, T., Werner, R., Forchel, A., and Arakawa, Y., Phys. Stat. Sol. (a) 176, 63 (1999).Google Scholar
11. Ishii, T., Tazoh, Y., and Miyazawa, S., Jpn. J. Appl. Phys. Part 2, 36(2A), L139 (1997).Google Scholar
12. Duan, S., Teng, X., Han, P., and Lu, D., J. Cryst. Growth, 195, 304 (1998).Google Scholar
13. Riblet, P., Hirayama, H.. Kinoshita, A., Hirata, A., Sugano, T., and Aoyagi, Y., Phys. Stat. Sol. (b), 216, 287 (1999).Google Scholar
14. Wang, T., Nakagawa, D., Lachab, M., Sugahara, T., and Sakai, S., Phys. Stat. Sol. (b), 216, 279 (1999).Google Scholar
15. Adachi, S., J. Appl. Phys. 61(10), 4869 (1987).Google Scholar
16. Off, J., Kniest, A., Vorbeck, C., Scholz, F., and Ambacher, O., J. Cryst. Growth, 195, 286 (1998).Google Scholar
17. Jones, G., Smith, A., O'Reilly, E., Silver, M., Briggs, A., Fice, M., Adams, A., Greene, P., Scarrott, K., and Vranic, A., J. Quant. Electron. 34(5), 823 (1998).Google Scholar
18. Yeo, Y., Chong, T., Li, M., and Fan, W., J. Appl. Phys. 84(4), 1813 (1998).Google Scholar
19. Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsushita, T., Sugimoto, Y., and Kiyoku, H., Appl. Phys. Lett. 69(11), 1568 (1996).Google Scholar
20. Abare, A., Mack, M., Hansen, M., Speck, J., Coldren, L., DenBaars, S., Meyer, G., Lehew, S., and Cooper, G., Appl. Phys. Lett. 73(26), 3887 (1998).Google Scholar
21. Kuball, M., Jeon, E., Song, Y., Nurmikko, A., Kozodoy, P., Abare, A., Keller, S., Coldren, L., Mishra, U., DenBaars, S., and Steigerwald, D., Appl. Phys. Lett. 70(19), 2580 (1997).Google Scholar