Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-26T16:16:52.627Z Has data issue: false hasContentIssue false

Group 2 Element Chemistry and its Role in OMVPE of Electronic Ceramics

Published online by Cambridge University Press:  15 February 2011

William S. Rees Jr.*
Affiliation:
Department of Chemistry and Materials Research and Technology Center, The Florida State University, Tallahassee, Florida 32306-3006
Get access

Abstract

Coordination compounds of alkaline-earth metals with simple monodentate ligands were mentioned in the literature as early as 1820, when Faraday reported ‘metal-ammonias’.[1] The number of heavy alkaline earth element coordination compounds remained limited for many years, however, as it was thought to be unlikely for the large earth alkaline cations to form such complexes. In 1967 Pedersen discovered that cyclic oligoethers (crown ethers) can serve as suitable ligands for divalent alkaline earth cations.[2] His findings were extended a few years later by Lehn who found that macrobicyclic multidentate ligands (cryptands) are efficient ligands for alkaline earth cations.[3] In each of these examples, the primary mode of metal-ligand interaction is electrostatic in origin. These examples demonstrate the lack of well-defined covalent bonding for Ca, Sr and Ba compounds. In the 25 years which have passed since Pedersen's seminal discovery, a large number of coordination compounds containing alkaline earth metals have been synthesized. In recent years, the emphasis has shifted towards the preparation of group 2 element-containing compounds which potentially can be used as precursors in the preparation of metal oxides by chemical vapor deposition [4–8]. In light of the general agreement that no “perfect” barium source presently exists for OMVPE purposes, this article will focus on general themes in group 2 element chemistry and, where relevant, correlate those themes within an integrated approach to design of new compounds of greater potential utilization for the preparation of electronic materials in thin film form.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Faraday, M., Prog. Ann. 1, 20 (1820).Google Scholar
2. Pedersen, C. J., J. Am. Chem. Soc. 89, 7017 (1967).CrossRefGoogle Scholar
3. Dietrich, B., Lehn, J. M., Sauvage, J. P., Tetrahedron Lett. 1969, 2885.CrossRefGoogle Scholar
4. Mantese, J. V., Catalan, A. B., Hamdi, A. H., Micheli, A. L., Appl. Phys. Lett. 1969, 2885.Google Scholar
5. Hubert-Pfaltzgraf, L. G., Nouv. J. Chem. 11, 663 (1987).Google Scholar
6. Benac, M. J., Cowley, A. H., Jones, R. A., Tasch, A. F. Jr., Chem. Mater. 1, 289 (1989).CrossRefGoogle Scholar
7. Rees, W. S. Jr. and Barron, A. R, Materials Science Forum, Vol. 137–139, pp. 473494 (1993).CrossRefGoogle Scholar
8. Barron, A. R. and Rees, W. S. Jr., Advanced Materials for Optics and Electronics, Vol. 2, 271 (1993).CrossRefGoogle Scholar
9. Stucky, G., Rundle, R. E., J. Am. Chem. Soc. 86, 4825 (1964).CrossRefGoogle Scholar
10. Guggenberger, L. J., Rundle, R. E., J. Am. Chem.Soc. 90, 5375 (1968).CrossRefGoogle Scholar
11. Cloke, F. G. N., Hitchcock, P. B., Lappert, M. F., Lawless, G. A., Royo, B., J. Chem. Soc., Chem. Commun. 1991, 724.Google Scholar
12. Drake, S. R., Miller, S. A. S., Hursthouse, M. B., Malik, K. M. M., Polyhedron 12, 1621 (1993).CrossRefGoogle Scholar
13. Gardiner, R., Brown, D. W., Kirlin, P. S., Rheingold, A. L., Chem. Mater. 3, 1053 (1991).CrossRefGoogle Scholar
14. Timmer, K., Meinema, H. A., Inorg. Chim. Acta 187, 99 (1991).CrossRefGoogle Scholar
15. Rheingold, A. L., White, C. B., Haggerty, B. S., Kirlin, P. S., Gardiner, R. A., Acta Cryst. C 49, 808 (1993).CrossRefGoogle Scholar
16. Roux, J. P. and Boeyens, J. C., Acta Cryst. B 26, 526 (1970).CrossRefGoogle Scholar
17. Roux, J. P. and Kruger, G. J., Acta Cryst. B 32, 1171 (1976).CrossRefGoogle Scholar
18. Gentile, P. S., Dinstein, M. P., White, J. G., Inorg. Chim. Acta 19, 67 (1976).CrossRefGoogle Scholar
19. Gentile, P. S., White, J., Haddad, S., Inorg. Chim. Acta 13, 149 (1975).CrossRefGoogle Scholar
20. De Bolster, M. W. G., Kortram, I. E., Groeneveld, W. L., Inorg. Nucl. Chem. 34, 575 (1972).CrossRefGoogle Scholar
21. Karayannis, N. M., Mikulski, C. M., Strocko, M. J., Pytlweski, L. L., Inorg. Nucl. Chem. 32, 2629 (1970).CrossRefGoogle Scholar
22. Drew, M. G. B., Knox, C. V., Nelson, S. M., J. Chem. Soc., Dalton Trans. 1980, 942.CrossRefGoogle Scholar
23. Westman, S., Werner, P., Schuler, T., Raldow, W., Acta Chem. Scand. A 35, 467 (1981).CrossRefGoogle Scholar
24. Isbin, H. S., Kobe, K. A., J. Am. Chem. Soc. 67, 464 (1945).CrossRefGoogle Scholar
25. Smith, G., O'Reilly, E. J., Kennard, C. H. L., White, A. H., J. Chem. Soc., Dalton Trans. 1977, 1184.Google Scholar
26. Gentile, P. S., Carlotto, J., Shankoff, T. A., J. Inorg. Nucl. Chem. 29, 1427 (1967).CrossRefGoogle Scholar
27. Voegele, P. J. C., Ficher, J., Weiss, R., Acta Cryst. B 30, 66 (1974).CrossRefGoogle Scholar
28. Voegele, J. C., Thierry, J. C., Weiss, R., Acta Cryst. B 30, 70 (1974).CrossRefGoogle Scholar
29. Poncelet, O., Hubert-Pfaltzgraf, L. G., Toupet, L., Daran, J. C., Polyhedron 10, 2045 (1991).CrossRefGoogle Scholar
30. Goel, S. C., Machett, M. A., Chiang, M. Y., Buhro, W. E., J. Am. Chem. Soc. 113, 1844 (1991).CrossRefGoogle Scholar
31 Caulton, K. G., J. Chem. Soc. 1990, 1349.Google Scholar
32. Drake, S. R., Streib, W. E., Chisholm, M. H., Caulton, K. G., Inorg. Chem. 29, 2707 (1990).CrossRefGoogle Scholar
33. Caulton, K. G., Chisholm, M. H., Drake, S. R., Streib, W. E., Angew. Chem. Int. Engl. Ed. 29, 1483 (1990).CrossRefGoogle Scholar
34. Drake, S. R., Streib, W. E., Folting, K., Chisholm, M. H., Caulton, K. G., Inorg. Chem. 31, 3205 (1992).CrossRefGoogle Scholar
35. Tesh, K. F., Hanusa, T. P., Huffman, J. C., Inorg. Chem. 31, 5572 (1992).CrossRefGoogle Scholar
36. Drake, S. R., Otway, D. J., Hursthouse, M. B., Malik, K. M. A., Polyhedron 11, 1995 (1992).CrossRefGoogle Scholar
37. a. Rees, W. S. Jr., and Moreno, D. A., J. Chem. Soc. Chem. Commun. 1991, 1759.Google Scholar
b. Rees, W. S. Jr. and Moreno, D. A., in Johnson, N. R., Shelton, W. N. and El- Sayed, M. A., Eds “Spectroscopy and Structure of Molecules and Nuclei”;., World Scientific; Singapore, 1992, pp. 367374.Google Scholar
38. Berry, A. D., Gaskill, D. K., Holm, R. T., Cukaukas, E. J., Kaplan, R., Henny, R. L., Appl. Phys. Lett. 52, 1743 (1988).CrossRefGoogle Scholar
39. Yamane, H., Kurosawa, H., Hirai, T., Chem. Lett. 1988, 939.CrossRefGoogle Scholar
40. Fluck's VCH “Periodic Table of the Elements”, VCH Verlagsgesellschaft, Weinheim, 1985.Google Scholar
41. Turnispeed, S. B., Barkley, R. M., Sievers, R. E., Inorg. Chem. 30, 1164 (1991).Google Scholar
42. Gleizes, A., Medus, D., Sans-Lenain, S., MRS Spring Meeting, San Francisco, CA, 1992, Abstract N4.7/P3.7.Google Scholar
43. Barron, A. R., Buriak, J. M., Gordon, R., US Patent, 5, 139, 999 (1992).Google Scholar
44. Rees, W. S. Jr., Carris, M. W., Hesse, W., Inorg. Chem. 30, 4479 (1991).CrossRefGoogle Scholar
45. Spek, A. L., van der Sluis, P., Timmer, K., Meinema, H. A., Acta Cryst. 46C, 1741 (1990).Google Scholar
46. Drake, S. R., Hursthouse, M. B., Abdul Malik, K. M., Miller, S. A. S., Inorg. Chem. 32, 4653 (1993).CrossRefGoogle Scholar
47. Gilbert, S. R., Wessels, B. W., Neumayer, D. A., Marks, T. J., MRS Fall Meeting, Boston, MA, 1993, Abstract Y2.5.Google Scholar
48. Rees, W. S. Jr.,, Caballero, C. R., Hesse, W., Angew. Chem. 104, 786 (1992).CrossRefGoogle Scholar
49. Kuzmina, N., personal communication, 1992.Google Scholar
50. Schultz, D. L., Hinds, B. J., Stem, C. L., Marks, T. J., Inorg. Chem. 32, 249 (1993).CrossRefGoogle Scholar
51. Hanusa, T. P., Chem. Rev. 93 (1993) in press.CrossRefGoogle Scholar
52. Gmelin's Handbuch der Anorganischen Chemie, 8th ed., Vol. 30, 1932.Google Scholar
53. Comprehensive Organometallic Chemistry, Wilkinson, G., Stone, F. G. A., Abel, A. W., eds., Pergamon Press, Oxford, Vol 1, 1982.Google Scholar
54. Rees, W. S. Jr. and Dippel, K. A., Org. Prep. Proc. Intl. 24, 531 (1992).CrossRefGoogle Scholar
55. Rees, W. S. Jr., Lay, U. W., Dippel, K. A., J. Organomet. Chem. 1994, submitted for publication.Google Scholar
56. Rees, W. S. Jr., and Dippel, K. A., in Hench, L. L., West, J. K., Ulrich, D. R., Eds., “Ultrastructure Processing of Ceramics, Glasses, Composites, Ordered Polymers, and Advanced Optical Materials V”, Wiley, 1992, pp. 327332.Google Scholar
57. Rees, W. S. Jr. “The Inorganic Chemistry of the Group 2 Elements”, in, “Encyclopedia of Inorganic Chemistry”, Wells, R., Ed. Wiley, 1994, in press.Google Scholar
58. Wiberg, E., Stecher, O., Andrascheck, H. J., Kreuzbichler, L., Staude, E., Angew. Chem. 75, 516 (1963)CrossRefGoogle Scholar
59. Koreva, A. N., Kuzmina, N. P., Dunaeva, K. M., Russ. J. Inorg. Chem. 37, 366 (1992).Google Scholar
60. Drake, S. R., Hall, P., Lincoln, R., Polyhedron 12, 2307 (1993).CrossRefGoogle Scholar
61. Rees, W. S. Jr.,, Luten, H. A., Carris, M. W., Caballero, C. R., Hesse, W., Goedken, V. L., MRS Symposium Proceedings, Spring 1993 Meeting, San Francisco, CA., “Ferroelectric Thin Films III”, Myers, E. R., Desu, S. B., Tuttle, B. A., Larson, P. K., Eds., in press.Google Scholar
62. Rees, W. S. Jr. Dippel, K. A., Carns, M. W., Caballero, C. R., Moreno, D. A., Hesse, W., MRS Symposium Proceedings, 271, 1992, 127134.CrossRefGoogle Scholar
63. Rees, W. S. Jr., Luten, H. A., Carris, M. W., Doskocil, E. J., Goedken, V. L., MRS Sympopsium Proceedings, 1992, 271, 141147.Google Scholar
64. Rees, W. S. Jr., Hascicek, Y. S., Testardi, L. R., MRS Symposium Proceedings, 1992, 271, 925.CrossRefGoogle Scholar
65. Rees, W. S. Jr., in Rasmussen, R., Ed. Proceedings of the Fourth Florida Microelectronics and Materials Conference, University of South Florida Press, Tampa, Florida, 1992, 83.Google Scholar
66. Rees, W. S. Jr. Ceramic Industries International, April 1993, 22 - 26.Google Scholar