Skip to main content Accessibility help
×
Home

Graphene Terahertz Lasers: Injection versus Optical Pumping

  • Taiichi Otsuji (a1) (a2), Akira Satou (a1) (a2), Maxim Ryzhii (a3) (a2), Vladimir Mitin (a4) and Victor Ryzhii (a1) (a2)...

Abstract

In this paper we demonstrate that graphene is one of the best materials for new types of terahertz lasers as optical and/or injection pumping of graphene can exhibit negative-dynamic conductivity in the terahertz spectral range. We analyze the formation of nonequilibrium states in optically pumped graphene layers and in forward-biased graphene structures with lateral p-i-n junctions and consider the conditions of population inversion and lasing. The latter provides a significant advantage of the injection pumping in realization of graphene terahertz lasers. We benchmark graphene as a prospective material for injection-type terahertz lasers.

Copyright

References

Hide All
1. Tonouchi, M., Nature Photon. 1, 97 (2007).
2. Novoselov, K.S, Geim, A.K., Morozov, S.V, Jiang, D, Zhang, Y., Dubonos, S.V., Grigorieva, I.V., and Frisov, A.A., Science 306,666 (2004).
3. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Katsnelson, M.I., Grigorieva, I.V., Dubonos, S.V., Firsov, A., Nature 438, 197 (2005).
4. Kim, P., Zhang, Y., Tan, Y.-W., Stormer, H.L., Nature 438, 201 (2005).
5. Geim, K. and Novoselov, K. S., Nature Mater. 6, 183 (2007).
6. Bonaccorso, F., Sun, Z., Hasan, T., and Ferrari, A. C., Nature Photon. 4, 611622 (2010).
7. Ryzhii, V., Ryzhii, M., and Otsuji, T., J. Appl. Phys. 101, 083114 (2007).
8. Ryzhii, M. and Ryzhii, V., Jpn. J. Appl. Phys. 46, L151 (2007).
9. Ryzhii, V., Ryzhii, M., Mitin, V., and Otsuji, T., J. Appl. Phys. 110, 094503 (2011).
10. Karasawa, H., Komori, T., Watanabe, T., Satou, A., Fukidome, H., Suemitsu, M., Ryzhii, V., and Otsuji, T., J. Infrared Milli. Terahertz Waves 32, 655 (2011).
11. Boubanga-Tombet, S., Chan, S., Watanabe, T., Satou, A., Ryzhii, V., and Otsuji, T., Phys. Rev. B 85, 035443 (2012).
12. Otsuji, T., Boubanga-Tombet, S., Satou, A., Suemitsu, M., and Ryzii, V., J. Infrared Milli. Terahtz. Waves 33, 825 (2012).
13. Otsuji, T., Boubanga Tombet, S. A., Satou, A., Fukidome, H., Suemitsu, M., Sano, E., Popov, V., Ryzhii, M., and Ryzhii, V., J. Phys. D 45, 303001 (2012).
14. Dubinov, A. A., Aleshkin, V. Y., Ryzhii, M., Otsuji, T., and Ryzhii, V., Appl. Phys. Express 2, 092301 (2009).
15. Ryzhii, V., Ryzhii, M., Satou, A., Otsuji, T., Dubinov, A.A. and Aleshkin, V.Y., J. Appl. Phys. 106, 084507 (2009).
16. Ryzhii, V., Dubinov, A., Otsuji, T., Mitin, V., and Shur, M. S., J. Appl. Phys. 107, 054505 (2010).
17. Ryzhii, V., Ryzhii, M., Mitin, V., Satou, A., and Otsuji, T., Jpn. J. Appl. Phys. 50, 094001 (2011).
18. Satou, A., Otsuji, T., Ryzhii, V., Jpn. J. Appl. Phys. 50, 070116 (2011).
19. Satou, A., Boubanga Tombet, S. A., Otsuji, T., and Ryzhii, V., in Dig. OTST: Int. Conf. on Optical Terahertz Science and Technology, OSA, Ed. (2011) p. TuA3.
20. Suzuura, H. and Ando, T., J. Phys. Soc. Jpn. 77, 044703 (2008).
21. Maultzsch, J., Phys. Rev. B 70, 155403 (2004).
22. Dawlaty, J.M., Shivaraman, S., Chandrashekhar, M., Rana, F., Spencer, M.G., Appl. Phys. Lett. 92, 042116 (2008).
23. George, P. A., Strait, J., Dawlaty, J., Shivaraman, S., Chandrashekhar, M., and Spencer, F. R. M. G., Nano Lett. 8, 4248 (2008).
24. Breusing, M., Ropers, C., and Elsaesser, T., Phys. Rev. Lett. 102, 086809 (2009).
25. Suzuura, H., Ando, T., “Zone-boundary phonon in graphene and nanotube, ” J. Phys. Soc. Jpn. 77, 044703 (2008).
26. Rana, F., George, P. A., Strait, J. H., Dawlaty, J., Shivaraman, S., Chandrashekhar, M., and Spencer, M. G., “Carrier recombination and generation rates for intravalley and intervalley phonon scattering in graphene, ” Phys. Rev. B 79, 115447 (2009).
27. de Heera, W.A., Berger, C., Wu, X., First, P.N., Conrad, E.H., Li, X., Li, T., Sprinkle, M., Hass, J., Sadowski, M.L., Potemski, M., Martinez, G.d, Solid State Comm. 143, 92 (2007).
28. Fukidome, H., Takahashi, R., Abe, S., Imaizumi, K., Handa, H., Kang, H.-C., Karasawa, H., Suemitsu, T., Otsuji, T., Enta, Y., Yoshigoe, A., Teraoka, Y., Kotsugi, M., Ohkouchi, T., Kinoshita, T. and Suemitsu, M., J. Mater. Chem. 21, 17242 (2011).
29. Fukidome, H., Abe, S., Takahashi, R., Imaizumi, K., Inomata, S., Handa, H., Saito, E., Enta, Y., Yoshigoe, A., Teraoka, Y., Kotsugi, M., Ohkouchi, T., Kinoshita, T., Ito, S., and Suemitsu, M., Appl. Phys. Express 4, 115104 (2011).
30. Ryzhii, V., Ryzhii, M., and Otsuji, T., Appl. Phys. Express 1, 013001 (2008).
31. Ryzhii, V., Satou, A. and Otsuji, T., J. Appl. Phys. 101, 024509 (2007).
32. Popov, V. V., Bagaeva, T. Yu., Otsuji, T., and Ryzhii, V., Phys. Rev. B 81, 073404 (2010).
33. Svintsov, D., Vyurkov, V., Yurchenko, S., Otsuji, T., and Ryzhii, V., J. Appl. Phys. 111, 083715 (2012).
34. Fukushima, T., Chan, S., Boubanga Tombet, S., Ryzhii, V., Popov, V., Otsuji, T., in Dig. QNN: International Workshop on Quantum Nanostructure & Nanoelectronics, (2011) p. P-24.
35. Ju, L., Geng, B., Horng, Jason, Girit, C., Martin, M., Hao, Z., Bechtel, H.A., Liang, X., Zettl, A., Ron Shen, Y., and Wang, F., Nature Nanotech. 6, 630 (2011).
36. Nikitin, A. Yu., Guinea, F., Garcia-Vidal, F. J., and Martin-Moreno, L., Phys. Rev. B 85, 081405(R) (2012).
37. Dubinov, A.A., Aleshkin, Y.V., Mitin, V., Otsuji, T., and Ryzhii, V., J. Phys.: Condens. Matter 23, 145302 (2011).
38. Takatsuka, Y., Takahagi, K., Sano, E., Ryzhii, V., and Otsuji, T., J. Appl. Phys. 112, 033103 (2012).
39. Williams, B.S., Nature Photon. 1, 517 (2007).
40. Fathololoumi, S., Dupont, E., Chan, C.W.I., Wasilewski, Z.R., Laframboise, S.R., Ban, D., M´aty´as, A., Jirauschek, C., Hu, Q., and Liu, H. C., Opt. Express 20, 3866 (2012).
41. Kumar, S., Chan, C. W. I., Hu, Q., and Reno, J. L., Nature Physics 7, 166 (2011).
42. Nishizawa, J. and Suto, K., J. Appl. Phys. 51, 2429 (1980).
43. Pavlov, G., Hubers, H.-W., Hovenier, J. N., Klaassen, T. O., Carder, D. A., Phillips, P. J., Redlich, B., Riemann, H., Zhukavin, R. Kh., and Shastin, V. N., Phys. Rev. Lett. 96, 037404 (2006).
44. Minamide, H., Ikari, T. and Ito, H., Rev. Sci. Instrum. 80, 123104 (2009).
45. Mu, X., Zotova, I.B., and Ding, Y. J., IEEE J. Selected Topics in Quantum Electron. 14, 315 (2008).
46. Hebling, J., Almasi, G. and Kozma, I. Z., Opt. Expres 10, 1161 (2002).
47. Suizu, K., Shibuya, T., Uchida, H., and Kawase, K., Optics Express 18, 3338 (2010).
48. Hirori, H., Doi, A., Blanchard, F., and Tanaka, K., Appl. Phys. Lett. 98, 091106 (2011).
49. Nishizawa, J., Tanabe, T., Suto, K., Watanabe, Y., Sasaki, T., and Oyama, Y., IEEE Photon. Technol. Lett. 18, 2008 (2006).
50. Ragam, S., Tanabe, T., Saito, K., Oyama, Y., Nishizawa, J., J. Lightwave Technol. 27, 3057 (2009).
51. Kiessling, J., Fuchs, F., Buse, K., Breunig, I., Opt. Lett. 36, 4374 (2011).
52. Suzuki, S., Asada, M., Teranishi, A., Sugiyama, H., and Yokoyama, H., Appl. Phys. Lett. 97, 242102 (2010).
53. Asada, M., Suzuki, S., and Kishimoto, N., Jpn. J. Appl. Phys. 47, 4375 (2008).

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed