Skip to main content Accessibility help
×
Home

Grain Refinement for Strengthening in Fe3Al-based Alloys Through Thermomechanical Processing

  • Satoru Kobayashi (a1), Akira Takei (a2) and Takayuki Takasugi (a3)

Abstract

A thermomechanical process (TMP) for grain refinement was performed in bulk Fe3Al-based alloys containing ˜10% volume fraction of κ-Fe3AlC precipitates. In the TMP, κ particles play an important role in reducing the inhomogeneity of recrystallization due to the matrix orientation. The grain size was refined to ˜20 μm by optimizing the κ particle size. A fine-grained and pancake/recovered microstructure fabricated by the TMP showed more than 1200 MPa tensile strength and 8% tensile ductility at room temperature in air. The tensile strength of this material was higher than those of conventional wrought Fe3Al alloys at temperatures between room temperature and 500 °C, and the specific tensile strength was as high as that of the Ti-6Al-4V alloy at temperatures above 400 °C.

Copyright

References

Hide All
1. Morris, D.G., In: Schneibel, J.H. et al, editor. Processing, Properties and Applications of Iron Aluminides, TMS, Warrendale, PA, 1994, p. 3.
2. Stoloff, N.S., Mater. Sci. Eng. A258, 1 (1998).
3. McKamey, C.G. and Pierce, D.H., Scr. Metall. 28, 1173 (1993).
4. Sikka, V.K. et al. US Patent No. 5084109.
5. Huang, Y.D., Yang, W.Y., Sun, Z.Q., Mater. Sci. Eng. A263, 75 (1999).
6. Huang, Y.D., Yang, W.Y., Chen, G.L., Sun, Z.Q., Intermetallics 9, 331 (2001).
7. McKamey, C.G., Maziasz, P.J., In: Schneibel, J.H. et al, editor. Processing, Properties and Applications of Iron Aluminides, TMS, Warrendale, PA, 1994, p. 147.
8. Schneider, A., Sauthoff, G., Steel Res. Int. 75, 55 (2004).
9. Morris, D.G., Morris, M.A., Baudin, C., Acta Mater. 52, 2827 (2004).
10. Palm, M., Intermetallics 13, 1286 (2005).
11. Kratochvíl, P., Málek, P., Cieslar, M., Hanus, P., Hakl, J., Vlasák, T., Intermetallics 15, 333 (2007).
12. Nano-DS Fe40Al Alloy Material Properties & Guidelines, project funded by the European Community under the ‘Competitive and Sustainable Growth’ Programme (19982002).
13. Kobayashi, S., Zaefferer, S., Schneider, A., Raabe, D., Frommeyer, G., Mater. Sci. Eng. A387–389, 950 (2004).
14. Kobayashi, S., Zaefferer, S., Schneider, A., Raabe, D., Frommeyer, G., Intermetallics 13, 1296 (2005).
15. Kobayashi, S., Zaefferer, S., Raabe, D., Mater. Sci. Forum 550, 345 (2007).
16. Kobayashi, S., Zaefferer, S., Mater. Sci. Forum 558–559, 235 (2007).
17. Kobayashi, S., Takasugi, T., Intermetallics 15, 1659 (2007).
18. Humphreys, F.J., Hatherly, M.. Recrystallization and related annealing phenomina. 2nd ed. Pergamon; 2004, p. 285.
19. Takei, A., Kobayashi, S., Takasugi, T., submitted to proceedings of Mater. Res. Soc. Symp. (2008).
20. Sikka, V.K., International Symposium on Nickel and Iron Aluminides: Processing, Properties, and Applications, ASM, 1996, pp. 361375.
21. Destefani, J.D., ASM Handbook, Tenth edition, ASM, Volume 2, p. 628, Fig. 30.
23. McKamey, C.G. et al. US Patent No.4961903.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed