Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-19T23:15:42.182Z Has data issue: false hasContentIssue false

Grain Boundary Dynamics: A Novel Tool for Microstructure Control

Published online by Cambridge University Press:  21 March 2011

G. Gottstein
Affiliation:
Institut für Metallkunde und Metallphysik, RWTH Aachen, D-52056 Aachen, Germany
D.A. Molodov
Affiliation:
Institut für Metallkunde und Metallphysik, RWTH Aachen, D-52056 Aachen, Germany
L. S. Shvindlerman
Affiliation:
Institut für Metallkunde und Metallphysik, RWTH Aachen, D-52056 Aachen, Germany Institute of Solid State Physics, Russian Academy of Science, Chernogolovka, Moscow, distr., 142432, Russia
M. Winning
Affiliation:
Institut für Metallkunde und Metallphysik, RWTH Aachen, D-52056 Aachen, Germany
Get access

Abstract

The reaction of grain boundaries to a wide spectrum of forces is reviewed. Curvature, volume energy and mechanical forces are considered. The boundary mobility is strongly dependent on misorientation, which is attributed to both grain boundary structure and segregation. In magnetically anisotropic materials grain boundaries can be moved by magnetic forces. For the first time a directionality of boundary mobility isreported. Flat boundaries can also be moved by mechanical forces, which sheds new light on microstructure evolution during elevated temperature deformation. Curvature driven and mechanically moved boundaries can behave differently. A sharp transition between the small and large angle boundary regime is observed. It is shown that grain boundary triple junctions have a finite mobility and thus, may have a serious impact on grain growth in fine grained materials. The various dependencies can be utilized to influence grain boundary motionand thus, microstructure evolution during recrystallization and grain growth.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

0. Gottstein, G., Shvindlerman, L.S., Grain Boundary Migration in Metals, Thermodynamics, Kinetics, Applications, CRC Press, Boca Raton (1999).Google Scholar
1. Rath, B.B., Hu, H., The Nature and Behavior of Grain Boundaries, ed. Hu, H., Plenum Press, New York, 1972.Google Scholar
2. Czubayko, U., Molodov, D.A., Petersen, B.-C., Gottstein, G., Shvindlerman, L.S., Meas. Sci. Technol. 6, 947 (1995).Google Scholar
3. Huang, Y., Humphreys, F.J., Acta Mater., 47, 2259 (1999).Google Scholar
4. Czubayko, U., Sursaeva, V.G., Gottstein, G., Shvindlerman, L.S., Acta Mater., 46, 5863 (1998).Google Scholar
5. Gleiter, H., Acta Met., 17, 853 (1969).Google Scholar
6. Gottstein, G., Shvindlerman, L.S., Scripta Metall. Mater., 27, 1521 (1992).Google Scholar
7. Aust, K.T. and Rutter, J.W., Trans.AIME, 215, 119 (1959)Google Scholar
8. Aust, K.T. and Rutter, J.W., Trans.AIME, 215, 820 (1959)Google Scholar
9. Aust, K.T. and Rutter, J.W., Acta metall., 13, 181 (1965)Google Scholar
10. Aristov, V. Yu., Mirochnik, V.L., Shvindlerman, L.S., Sov.Phys.Solid State, 18, 137 (1976)Google Scholar
11. Lücke, K., Can. Met. Quart., 13, 261 (1974).Google Scholar
12. Ibe, G., Dietz, W., Fraker, A. C. and Lücke, K., Z.Metallk., 61, 498 (1970).Google Scholar
13. Ibe, G., Lücke, K., Recrystallization, Grain Growth and Textures, p. 434 (1966).Google Scholar
14. Gottstein, G., Shvindlerman, L.S., Interface Sci., 6, 265 (1998).Google Scholar
15. Mullins, W.W., Acta Metall 4, 421 (1956).Google Scholar
16. Molodov, D.A., Gottstein, G., Heringhaus, F., Shvindlerman, L.S., Scripta Mater., 37, 1207 (1997)Google Scholar
17. Molodov, D.A., Gottstein, G., Heringhaus, F., Shvindlerman, L.S., Acta Mater., 46, 5627 (1998)Google Scholar
18. Washburn, J., Parker, E.R., Journal of Metals, 4, 1076 (1952)Google Scholar
19. Li, C.H., Edwards, E.H., Washburn, J., Parker, E.R., Acta Met., 1, 322 (1953).Google Scholar
20. Mondolfo, L.F., Aluminium Alloys, Structure and Properties, Butterworths London (1976).Google Scholar
21. Gottstein, G., Molodov, D.A., Czubayko, U., Shvindlerman, L.S., J.de Physique V, Colloq.C3, C389 (1995)Google Scholar
22. Galina, A.V.; Fradkov, V.E., Shvindlerman, L.S., Phys. Metal. Metall., 63, 165 (1987).Google Scholar
23. Fradkov, V.E., Shvindlerman, L.S., Structure and Properties of Interfaces inMetals, Moscow ”Nauka“ pp. 213 (1988).Google Scholar
24. Krill, C.E., Helfen, L., Michels, D., Natter, H., and R.Birringer, and Fitch, A., and Masson, O., submitted to Acta Mater. (2000).Google Scholar