Hostname: page-component-77c89778f8-swr86 Total loading time: 0 Render date: 2024-07-18T22:22:48.106Z Has data issue: false hasContentIssue false

The Glasses Transition and Low Energy Excitations in Supercooled Metallic Liquid and Glasses

Published online by Cambridge University Press:  17 March 2011

I. Kanazawa*
Affiliation:
Department of Physics, Tokyo Gakugei University, Koganei-shi, Tokyo 184-8501, Japan
Get access

Abstract

We have introduced the theory of three-dimensional supercooled metallic liquids and glasses, which is based on the gauge invariant agrangian with spontaneous breaking, and discussed the viscosity of the three-dimensional supercooled metallic liquids. n the basis of the present theoretical formula, a qualitative picture of low energy excitations (the boson peak) is proposed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kleman, M. and Sadoc, T. F., J. de Phys. 40, L567 (1979).Google Scholar
2. Nelson, D. R., Phys. Rev. Lett. 50, 982 (1983).Google Scholar
3. Sethna, J. P., Phys. Rev. Lett. 51, 2198 (1983).Google Scholar
4. Sachdev, S. and Nelson, D. R., Phys. Rev. Lett. 53, 1947 (1984).Google Scholar
5. Kanazawa, I., J. Non-Cryst. Solid 150, 271 (1992)Google Scholar
6. Kanazawa, I., Phys. Lett. A 176, 246 (1993).Google Scholar
7. Kanazawa, I., Trans. Mater. Res. Soc. Japan. 20, 431 (1996).Google Scholar
8. Kanazawa, I., Prog. Theor. Phys. Suppl. 126, 397 (1997).Google Scholar
9. Kanazawa, I., Trans. Mater. Res. Soc. Japan. 25, 983 (2000).Google Scholar
10. Kanazawa, I., J. Non-Cryst. Solids, to be published.Google Scholar
11. Kivelson, D., Kivelson, S. A., Zhao, X. L., Nussinov, Z., and Tajus, G., Physica A 219, 27 (1995).Google Scholar
12. Kivelson, D., Tarjus, G., and Kivelson, S. A., Prog. Theor. Phys. Suppl, 126, 289 (1997).Google Scholar
13. Sachdev, S. and Nelson, D. R., Phys. Rev. B32, 1480 (1985).Google Scholar
14. Kanazawa, I., Radiat. Phys. Chem. 58, 457 (2000).Google Scholar
15. Becchi, C., Rouet, A., and Stora, R., Comm. Math. Phys. 42, 127 (1975).Google Scholar
16. Kugo, T. and Ojima, I., Prog. Theor. Phys. Suppl. 66, 1 (1979).Google Scholar
17. Rajaraman, R., Soliton and Instantons (Elsevier Science Pub, 1989).Google Scholar
18. Polyakov, A. M., Gauge Fields and Strings (Harwood Academic Pub, 1987).Google Scholar
19. Fradkin, E., Field Theories of Condensed Matter System (Addison-Wesley, 1991).Google Scholar
20. Adam, G. and Gibbs, J. H., J. Chem. Phys. 43, 139 (1965).Google Scholar
21. Fisher, E. W., Physica A 201, 183 (1993).Google Scholar
22. Rouse, P. E., J. Chem. Phys. 21, 1272 (1953).Google Scholar
23. Gennes, P. G. de, J. Chem. Phys. 55, 572 (1971).Google Scholar
24. Doi, M. and Edwards, S. F., The Theory of Polymer Dynamics (Oxford Univ. Press. 1986).Google Scholar
25. Kleinert, H., Gauge fields in condensed Matter (World Sci. Pub, 1989).Google Scholar