Skip to main content Accessibility help
×
Home

Glass Transition in Sub-nanometer Confinement

  • A. Huwe (a1), F. Kremer (a1), M. Arndt (a1), P. Behrens (a2), W. Schwieger (a3), G. Ihlein (a4), Ö. Akdogan (a4) and F. Schüth (a4)...

Abstract

Broadband dielectric spectroscopy (10−2 Hz - 109Hz) is employed to study the molecular dynamics of low-molecular-weight glassforming liquids being confined to nanopores. For the H-bond forming liquid propylene glycol being confined to (uncoated and silanized) nanopores (pore size: 2.5 nm, 5.0 nm and 7.5 nm) a molecular dynamics is observed which is comparable to that of the bulk liquid. Due to surface effects in uncoated nanopores the relaxation time distribution is broadened on the long term side and the mean relaxation rate is decreased by about half a decade. This effect can be counterbalanced by lubricating the inner surfaces of the pores resulting in a relaxation rate which is slightly faster compared to the bulk liquid. For the H-bonded liquid ethylene glycol (EG) embedded in zeolites of different pore size and topology one observes a sharp transition from a single-molecule dynamics to that of a liquid depending on the coordination number of the confined molecules. While EG in silicalite (showing a single molecule relaxation) has four neighboring molecules, EG in zeolite beta or AIPO4-5 has a coordination number of five and behaves like a bulk liquid.

Copyright

References

Hide All
1. Angell, C. A., Science 267, 1924 (1995).
2. Frick, B. and Richter, D., Science 267, 1939 (1995).
3. Böhmer, R., Ngai, K. L., Angell, C. A. and Plazek, D. J., J. Chem. Phys. 99, 4201 (1993).
4. Hansen, J. P., Theory of Simple Liquids (Academic Press, London, ed. 2, 1990).
5. Johari, G. P., in Relaxations in Complex Systems, edited by Ngai, K. L. and Wright, G. B., (Washington, 1984), pp. 17ff.
6. Adam, G. and Gibbs, J. H., J. Chem. Phys. 43, 139 (1965).
7. Donth., E. Glasübergang (Akademie Verlag, Berlin, 1981).
8. Götze, W., in Liquids, Freezing and the Glass Transition, edited by Levesque, D., Hansen, J. P. and Zinn-Justin, J., (North-Holland, Amsterdam, 1991).
9. Williams, G. and Fournier, J., J. Chem. Phys. 184, 5690 (1996).
10. Ngai, K. L., in Disorder Effects on Relaxational Processes. edited by Richert, R. and Blumen, A., (Springer-Verlag, Berlin, 1993), pp. 89ff.
11. Sappelt, D. and Jäckle, J., J. Phys. A 26, 7325 (1993).
12. Fischer, E. W., Douth, E. and Steffen, W., Phys. Rev. Lett. 68, 2344 (1992).
13. Fischer, E. W., Physica A 201, 183 (1993).
14. Gorbatschow, W., Arndt, M., Stannarius, R. and Kremer, F., Europhys. Lett. 35, 719 (1996).
15. Arndt, M., Stannarius, R., Gorbatschow, W. and Kremer, F., Phys. Rev. E 54, 5377 (1996).
16. Arndt, M., Stannarius, R., Groothues, H., Hempel, E. and Kremer, F., Phys. Rev. Lett. 79, 2077 (1997).
17. Streck, C., Mel'nichenko, Yu. B. and Richert, R., Phys. Rev. B 53, 5341 (1996).
18. Barut, G., Pissis, P., Pelster, R. and Nimtz, G., Phys. Rev. Lett. 80, 3543 (1998).
19. Bibby, D. M. and Dale, M. P., Nature 317, 157 (1985).
20. Braunbarth, C. M., Behrens, P., Felsche, J. and van de Goor, G., Solid State Ionics 101–103, 1273 (1997).
21. Meier, W. M., Olson, D. H. and Baerlocher, C., Atlas of Zeolite Structure Types, (Elsevier, Amsterdam 1996).
22. Newsam, J. M., Treacy, M. M. J., Koetsier, W. T. and Gruyter, C. B. de, Proc. Roy. Soc. (London) 420, 375 (1988).
23. Kremer, F., Boese, D., Maier, G. and Fischer, E. W., Prog. Polym. Sci. 80, 129 (1989).
24. Havriliak, S. and Negami, S., J. Polym. Sci. Part C 14, 99 (1966).
25. Nozaki, R. and Mashimo, S., J. Chem. Phys. 7 87, 2271 (1987).
26. Schäfer, H., Sternin, E., Stannarius, R., Arndt, M.. and Kremer, F., Phys. Rev. Lett. 76, 2177 (1996).
27. Pelster, R., submitted to Phys. Rev. B.
28. Mayo, S. L., Olafson, B. D. and Goddard, W. A. III, J. Phys. Chem. 94, 8897 (1990).
29. Rappe, A. K., Casewit, C. J., Colwell, K. S., Goddard, W. A. III and Skiff, W. M., J. Am. Chem. Soc. 114, 10024 (1992).
30. Burchart, E., thesis, Technische Universiteit Delft (1992).
31. Vogel, H., Phys. Zeit. 22, 645 (1921),
32. Fulcher, G. S., J. Am. Chem. Soc. 8, 339 (1925),
33. Tammann, G. and Hesse, G., Anorg. Allgem. Chem. 156, 245 (1926).
34. Schönhals, A., Kremer, F., Hofmann, A., Fischer, E. W. and Schlosser, E., Phys. Rev. Lett. 70, 3459 (1993).
35. Jordan, B. P., Sheppard, R. J. and Szwarnowski, S., J. Phys. D 11, 695 (1978).
36. Cusack, N. E., The Physics of structurally disordered Matter (Adam Hilger, Bristol, 1987).

Glass Transition in Sub-nanometer Confinement

  • A. Huwe (a1), F. Kremer (a1), M. Arndt (a1), P. Behrens (a2), W. Schwieger (a3), G. Ihlein (a4), Ö. Akdogan (a4) and F. Schüth (a4)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed