Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-05-01T17:47:20.131Z Has data issue: false hasContentIssue false

Glass Formation and Local Topological Instability of Atomic Structure

Published online by Cambridge University Press:  10 February 2011

T. Egami*
Affiliation:
Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, 19104–6272
Get access

Abstract

A direct connection between the local topology of the atomic structure of liquids and glasses and thermodynamic quantities through the atomic level stresses is suggested for metallic alloys. In particular the role of local topological instability in the phase transformations involving liquid and glass will be discussed. It is pointed out that a single local geometrical criterion can explain various phase transformations, such as melting, glass transition, and glass formation by solid state reaction and liquid quenching.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. e.g., Zallen, R., The Physics of Amorphous Solids (John Wiley & Sons, New York, 1983).Google Scholar
2. Egami, T., Maeda, K. and Vitek, V., Phil. Mag. A 41, 993 (1980).Google Scholar
3. Egami, T. and Srolovitz, D., J. Phys. F, 12, 2141 (1982).Google Scholar
4. Egami, T., in Science and Technology of Rapid Solidification and Processing, ed. Otooni, M. A. (Kluwar Academic, Netherlands, 1995) p. 291.Google Scholar
5. Egami, T., Mater. Sei. Eng., in press.Google Scholar
6. Chen, S. -P., Egami, T. and Vitek, V., Phys. Rev. B 37, 2440 (1988).Google Scholar
7. Egami, T. and Vitek, V., in Amorphous Materials: Modeling of Structure and Properties, ed. Vitek, V. (TMS-AIME, Warrendale, Pa, 1983) p. 127.Google Scholar
8. Egami, T. and Aur, S., J. Non-Cryst. Solids, 89, 60 (1987).Google Scholar
9. Eshelby, J. D., Proc. Roy. Soc. A 241, 376 (1957).Google Scholar
10. Egami, T., Rep. Prog. Phys. 47, 1601 (1984).Google Scholar
11. Fox, J. R. and Andersen, H. C., Ann. N. Y. Acad. Sci. 371, 123 (1981).Google Scholar
12. Tomida, T. and Egami, T., Phys. Rev. B 52, 3290 (1995).Google Scholar
13. Cohen, M. H. and Grest, G., Phys. Rev. B, 20, 1077 (1979).Google Scholar
14. Sabochick, M. J. and Lam, N. Q., Phys. Rev. B, 43, 5243 (1991).Google Scholar
15. Devanathan, R., Lam, N. Q., Okamoto, P. R. and Meshii, M., Phys. Rev. B, 48, 42 (1993).Google Scholar
16. Massalski, T. B., in Proc. 4th Int. Conf. Rapidly Quenched Metals, (The Japan Inst. Metals, Sendai, 1982) p. 203.Google Scholar
17. Egami, T. and Waseda, Y., J. Non-Cryst. Solids, 64, 113 (1984).Google Scholar
18. Liou, S. H. and Chien, C. L., Phys. Rev. B 35, 2443 (1987).Google Scholar