Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-24T01:20:42.214Z Has data issue: false hasContentIssue false

GISAXS study on the annealing behavior of sputtered HfO2 thin films

Published online by Cambridge University Press:  21 March 2013

G. S. Belo
Affiliation:
Electrical and Computer Engineering, University of Manitoba, Winnipeg MB, R3T 5V6, Canada
F. Nakagomi
Affiliation:
Instituto de Física, Universidade de Brasília, Brasília DF 70910-900, Brazil
P. E. N. de Souza
Affiliation:
Instituto de Física, Universidade de Brasília, Brasília DF 70910-900, Brazil
S. W. da Silva
Affiliation:
Instituto de Física, Universidade de Brasília, Brasília DF 70910-900, Brazil
D. A. Buchanan
Affiliation:
Electrical and Computer Engineering, University of Manitoba, Winnipeg MB, R3T 5V6, Canada
Get access

Abstract

Grazing Incidence Small-Angle X-ray Scattering (GISAXS) is a versatile technique for the analysis of nano and micro thin films surfaces. The scattering data depend strongly on the form and distribution of the scattering objects. In the present work GISAXS is used to study hafnium dioxide (HfO2) thin films deposited by magnetron sputtering using different deposition processes and post-deposition annealing conditions. Two distinct types of 15 nm thick samples were produced using different sputtering targets and different gas mixtures. The GISAXS results show that the ellipsoids that compose the thin films present a reduction in their size for both samples sets. For the sputtered Hf metal target samples, the ellipsoid diameter value shifted from 9 nm (as-deposited) to 6 nm following a 800 °C thermal treatment. For the sputtered HfO2 target samples the diameter value shifts from 19 nm (as-deposited) to 3 nm after a 800 °C anneal in oxygen. The size distribution, for both sets of samples, follows a Gaussian distribution function.

Type
Articles
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Green, M. L., Gusev, E. P., Degraeve, R., and Garfunkel, E., J. Appl. Phys. (Review), 90 2057 (2001).CrossRefGoogle Scholar
Gusev, E. P., “Ultrathin oxide films for advanced gate dielectrics applications: Recent progress and future challenges,” in Defects in SiO2 and Related Dielectrics: Science and Technology, NATO Advanced Technology Series, G. P. e. al.,Ed. Dordrecht: Kluwer, pp. 557579, 2000.CrossRefGoogle Scholar
Gusev, E. P., Copel, M., Cartier, E., Buchanan, D. A., Okorn-Schmidt, H., Gribelyuk, M., Falcon, D., Murphy, R., Molis, S., Baumvol, I. J. R., Krug, C., Jussila, M., Tuominen, M., and Haukka, S., “Physical characterization of ultrathin films of high dielectric constant materials on silicon,” in The Physics and Chemistry of SiO2 and the Si-SiO2 Interface - 4, Massoud, H. Z., Poindexter, E. H., Hirose, M., and Baumvol, I. J. R., Eds.Pennington, NJ, pp. 477485, 2000.Google Scholar
Keister, J. W., Rowe, J. E., Kolodziej, J. J., Niimi, H., Madey, T. E., and Lucovsky, G., J. Vac. Sci. Technol. B, 17 1831 (1999).CrossRefGoogle Scholar
Buchanan, D. A. and Lo, S. H., Microelectronic Engineering, 36, 1320 (1997).CrossRefGoogle Scholar
Ryan, J. T., Lenahan, P. M., Robertson, J., and Bersuker, G., Applied Physics Letters, 92 (2008).CrossRefGoogle Scholar
Robertson, J., Solid-State Electronics 49, 283293 (2005).CrossRefGoogle Scholar
Kim, Y.H., Lee, J.C., Hf-based High-k Dielectrics: Process Development, Performance Characterization, and Reliability, Synthesis, Lectures on Solid State Materials and Devices, 1, pp. 1–92, 2006.CrossRefGoogle Scholar
Houssa, M. (Ed.), High-κ Gate Dielectrics (Materials Science and Engineering), Institute of Physics (IOP), Bristol, 2003.CrossRefGoogle Scholar
Campbell, S. A., Fabrication Engineering at the Micro- and Nanoscale, Oxford University Press, New York, 2008.Google Scholar
Sze, S. M., Semiconductor Devices Physics and Technology, John Wiley & Sons, New York, 2002.Google Scholar
Babonneau, D., J. Appl. Crystallogr. 43, 929 (2010).CrossRefGoogle Scholar
Renaud, G., Lazzari, R. and Leroy, F., Surface Science Reports 64, 255 (2009).CrossRefGoogle Scholar
Modreanu, M., Sancho-Parramon, J., Durand, O., Servet, B., Stchakovsky, M., Eypert, C., Naudin, C., Knowles, A., Bridou, F., Ravet, M.-F., Applied Surface Science 253, 328 (2006).CrossRefGoogle Scholar
Green, M. L., Allen, A. J., Jordan-Sweet, J. L. and Ilavsky, J., J. Appl. Phys. 105 (2009). 103552–1.CrossRefGoogle Scholar
Stemmer, S., Li, Y., Foran, B., Lysaght, P. S., Streiffer, S. K., Fuoss, P., and Seifert, S., Appl. Phys. Lett 83 (2003) 3141.CrossRefGoogle Scholar