Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-07-01T17:54:59.406Z Has data issue: false hasContentIssue false

Ge nanocrystals in MOS-memory structures produced by molecular-beam epitaxy and rapid-thermal processing

Published online by Cambridge University Press:  01 February 2011

A. Nylandsted Larsen
Affiliation:
Institute of Physics and Astronomy, University of Aarhus, DK-8000 Aarhus C, Denmark
A. Kanjilal
Affiliation:
Institute of Physics and Astronomy, University of Aarhus, DK-8000 Aarhus C, Denmark
J. Lundsgaard Hansen
Affiliation:
Institute of Physics and Astronomy, University of Aarhus, DK-8000 Aarhus C, Denmark
P. Gaiduk
Affiliation:
Institute of Physics and Astronomy, University of Aarhus, DK-8000 Aarhus C, Denmark
P. Normand
Affiliation:
Institute of Microelectronics, NCSR Demokritos, 15310 Aghia Paraskevi, Greece
P. Dimi-trakis
Affiliation:
Institute of Microelectronics, NCSR Demokritos, 15310 Aghia Paraskevi, Greece
D. Tsoukalas
Affiliation:
National Technical University Athens, School of Applied Sciences, 15780 Zografou, Greece
N. Cherkashin
Affiliation:
CEMES/CNRS, 29 rue J. Marvig, BP4347, F-31055, Toulouse, France
A. Claverie
Affiliation:
CEMES/CNRS, 29 rue J. Marvig, BP4347, F-31055, Toulouse, France
Get access

Abstract

A method of forming a sheet of Ge nanocrystals in a SiO2 layer based on molecular beam epitaxy (MBE) and rapid thermal processing (RTP) is presented. The method takes advantage of the very high precision by which a very thin Ge layer can be deposited by MBE. With proper choice of process parameters the nanocrystal size can be varied between ∼3 and ∼8 nm and the area-density between ∼1×1011 and ∼1×1012 dots/cm2. The tunneling oxide thickness is determined by the thickness of a thermally grown SiO2 layer, and is typically 4 nm. C-V measurements of MOS capacitors reveal hole and electron injection from the substrate into the nanocrystals. Memory windows of about 0.2 and 0.5 V for gate-voltage sweeps of 3 and 6 V, respectively, are achieved.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Wong, H.-S. P., Frank, D.J., Solomon, P.M., Wann, C.H.J., and Welser, J.J., Proc. IEEE 87 (1999) 537570.Google Scholar
2. Tiwari, S., Rana, F., Hanafi, H., Hartstein, A., Crabbé, E.F., and Chan, K., Appl.Phys.Lett. 68 (1996) 13771379.Google Scholar
3. Choi, W.K., Chim, W.K., Heng, C.L., Teo, L.W., Ho, V., Ng, V., Antoniadis, D.A. and Fitzgerald, E. A., Appl.Phys.Lett. 80 (2002) 20142016.Google Scholar
4. Kapetanakis, E., Normand, P., Tsoukalas, D., Beltsios, K., Stoemenos, J., Zhang, S., and J. van den Berg, Appl.Phys.Lett. 77 (2000) 34503452.Google Scholar
5. Ostraat, M.L., De Blauwe, J.W., Green, M.L., Bell, L.D., Brongersma, M.L., Casperson, J., Flagan, R.C., Atwater, H.A., Appl. Phys. Lett. 79 (2001) 433435.Google Scholar
6. Tiwari, S., Rana, F., Chan, K., Shi, L., and Hanafi, H., Appl. Phys. Lett. 69 (9), 1232 (1996)Google Scholar
7. Stegemann, K.-H., Thees, H.-J., Wittmaack, M., Borany, J.v., Heinig, K.-H., and Gebel, T., Proc. “Ion Implantation Technology 2000 Conference”, edited by Ryssel, H., Frey, L., Gyulai, J., Glawischnik, H. (Piscatawy, Hoes Lane 2000) p.32 Google Scholar
8. Kanjilal, A., Lundsgaard Hansen, J., Gaiduk, P., Nylandsted Larsen, A., Cherkashin, N., Claverie, A., Normand, P., Kapetanakis, E., Skarlatos, D. and Tsoukalas, T., Appl.Phys.Lett. 82, 1212 (2003)Google Scholar
9. Kanjilal, A., Lundsgaard Hansen, J., Gaiduk, P., Nylandsted Larsen, A., Normand, P., Dimitrakis, P., and Tsoukalas, D., Cherkashin, N. and Claverie, A., Appl.Phys.A, Online First 2004 Google Scholar
10. Nylandsted Larsen, A., Kanjilal, A., Lundsgaard Hansen, J., Gaiduk, P.I., Cherkashin, N., Claverie, A., Normand, P., Kapelanakis, E., Tsoukalas, D., and Heinig, K.-H., in Physics, Chemistry and Application of Nanostructures, World Scientific, 2003 p.439 Google Scholar
11. Ostwald, W., Z. Phys. Chem. (Leipzig) 34, 495 (1900).Google Scholar
12. Heinig, K.-H. et al., unpublished results 2003 Google Scholar
13. Maeda, Y., Phys.Rev. B 51 (1995) 1658.Google Scholar