Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-05-15T01:20:28.097Z Has data issue: false hasContentIssue false

Ge δ-Layers on Si(111) and Si(001) Grown by MBE and SPE

Published online by Cambridge University Press:  15 February 2011

J. Falta
Affiliation:
Hamburger Synchrotronstrahlungslabor HASYLAB am Deutschen Elektronen-Synchrotron DESY, Notkestr. 85, 22603 Hamburg, Germany
T. Gog
Affiliation:
Hamburger Synchrotronstrahlungslabor HASYLAB am Deutschen Elektronen-Synchrotron DESY, Notkestr. 85, 22603 Hamburg, Germany
G. Materlik
Affiliation:
Hamburger Synchrotronstrahlungslabor HASYLAB am Deutschen Elektronen-Synchrotron DESY, Notkestr. 85, 22603 Hamburg, Germany
B. H. Müjller
Affiliation:
Institut für Festkörperphysik, Universität Hannover, Appelstr. 2, 30167 Hannover, Germany
M. Horn-Von Hoegen
Affiliation:
Institut für Festkörperphysik, Universität Hannover, Appelstr. 2, 30167 Hannover, Germany
Get access

Abstract

Ge δ-layers on Si(111) and Si(001), grown by molecular beam epitaxy (MBE) and solid phase epitaxy (SPE) were characterized in-situ by high-resolution low-energy electrondiffraction and post-growth by x-ray standing waves. LEED intensity oscillations are used to determine the growth mode of Ge on Si which is found to proceed in a double bilayer fashion for Ge on Si(111). X-ray standing waves are employed to investigate crystal quality of the Ge layer. SPE on Si(111) requires high annealing temperatures (600°C) for sufficient recrystallization of defects in the Ge δ-layer. On Si(001), Ge δ-layers of surprisingly high crystalline quality are grown by solid phase epitaxy at room temperature.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Henzler, M.. Appl. Phys. A 34, 205 (1984).Google Scholar
[2] Horn von Hoegen, M., Falta, J., and Henzler, M.. Thin Solid Films 183, 213 (1989).Google Scholar
[3] Batterman, B. W. and Cole, H.. Rev. Mod. Phys. 36, 681 (1964).Google Scholar
[4] Bedzyk, M. J. and Materlik, G.. Phys. Rev. B 32, (1986) 6456.Google Scholar
[5] Zegenhagen, J., Materlik, G., and Uelhoff, W.. J. X-Ray Sci. Technol. 2, 214 (1990).Google Scholar
[6] Maree, P. M. J., Nakagawa, K., Mulders, F. M., van der Veen, J. F., and Kavanagh, K. L.. Surf. Sci. 191, (1987) 305.Google Scholar
[7] Horn von Hoegen, M., Copel, M., Tsang, J. C., Reuter, M. C., and Tromp, R. M.. Phys. Rev. B 50, (1994) 10811.Google Scholar
[8] falta, J. and Henzler, M.. Surf. Sci. 269/270, 14 (1992).Google Scholar
[9] Horn von Hoegen, M., LeGoues, F. K., Copel, M., Reuter, M. C., and Tromp, R. M.. Phys. Rev. Lett. 67, 1130 (1991).Google Scholar
[10] Brantley, W. A.. J. Appl. Phys. 44,534 (1973).Google Scholar