Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-26T22:10:54.146Z Has data issue: false hasContentIssue false

Gas-Surface Reaction Studies Relevant to SiC Chemical Vapor Deposition

Published online by Cambridge University Press:  25 February 2011

C. D. Stinespring
Affiliation:
Center for Chemical and Environmental Physics, Aerodyne Research, Inc., 45 Manning Road, Billerica, MA 01821
A. Freedman
Affiliation:
Center for Chemical and Environmental Physics, Aerodyne Research, Inc., 45 Manning Road, Billerica, MA 01821
J. C. Wormhoudt
Affiliation:
Center for Chemical and Environmental Physics, Aerodyne Research, Inc., 45 Manning Road, Billerica, MA 01821
Get access

Abstract

Reactions of C2H4, C3H8, and CH4 on Si(111) and C2H4 on Si(100) have been investigated for surface temperatures in the range of 1062 K to 1495 K. These studies used x-ray photoelectron spectroscopy to identify the reaction products, characterize the solid state transport process, determine the nucleation mechanism and growth kinetics, and assess orienta-tion effects. The results are used to provide insight into the mechanisms of SiC CVD processes.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kahn, I.H. and Summergrad, R.N., Appl. Phys. Lett 11, 12 (1967).Google Scholar
2. Bozso, F., Yates, J.T., Jr., Choyke, W.J., and Muehlhoff, L., J. Appl. Phys. 57, 2771 (1985).Google Scholar
3. Muehlhoff, L., Choyke, W.J., Bozak, M.J., and Yates, J.T., Jr., Appl. Phys. Lett. 60, 2842 (1986).Google Scholar
4. Bozso, F., Muehlhoff, L., Trenary, M., Choyke, W.J., and Yates, J.T., Jr., J. Vac. Sci. Technol. 2, 1271 (1984).CrossRefGoogle Scholar
5. Stinespring, C.D., and Wormhoudt, J.C., J. Appl. Phys. (to appear).Google Scholar
6. Nishino, S., Powell, A.J., and Will, H.A., Appl. Phys. Lett. 42, 460 (1983).Google Scholar
7. Stinespring, C.D. and Wormhoudt, J.C., J. Cryst. Growth, 87, 481 (1988).Google Scholar
8. Madey, T.E., Yates, J.T., Jr., and Erickson, N.E., Chem. Phys. Lett. 19, 487 (1973).Google Scholar
9. Takai, T., Halicioglu, T., and Tiller, W.A., Surface Sci. 164, 327 (1985).Google Scholar
10. Newman, R.C. and Wakefield, J., Solid State Physics in Electronics and Telecommunications, 1, 318 (1960).Google Scholar
11. Hong, J.D., Davis, R.F., and Newbury, D.E., J. Mat. Sci. 16, 2485 (1981).Google Scholar
12. Taubenblatt, M.A. and Helms, C.R., J. Appl. Phys. 59, 1992 (1986).Google Scholar
13. Carlson, T.A., Photoelectron and Auger Spectroscopy (Plenum Press, New York 1978) p. 261.Google Scholar
14. Sazajman, J., Liesegang, J., Jenkin, J.G., and Leckey, R.C.G., J. Electron Spectrosc. 23, 97 (1981).CrossRefGoogle Scholar
15. Addamiano, A. and Sprague, J.A., Appl. Phys. Lett. 44, 525 (1984).Google Scholar
16. Rheed, G.E., Barthes, G.-H., and Argile, C., Thin Solid Films 82, 201 (1981).Google Scholar
17. Bauer, E. and Poppa, H., Thin Solid Films 12, 167 (1972).Google Scholar