Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-23T17:54:05.062Z Has data issue: false hasContentIssue false

Gas source molecular beam epitaxy of high quality AlGaN on Si and sapphire

Published online by Cambridge University Press:  17 March 2011

S. Nikishin
Affiliation:
Department of Electrical Engineering, Texas Tech University, Lubbock, TX 79401, USA
G. Kipshidze
Affiliation:
Department of Electrical Engineering, Texas Tech University, Lubbock, TX 79401, USA
V. Kuryatkov
Affiliation:
Department of Electrical Engineering, Texas Tech University, Lubbock, TX 79401, USA
A. Zubrilov
Affiliation:
Ioffe Physical-Technical Institute, St. Petersburg, 194021, Russia
K. Choi
Affiliation:
Department of Electrical Engineering, Texas Tech University, Lubbock, TX 79401, USA
Íu. Gherasoiu
Affiliation:
Department of Electrical Engineering, Texas Tech University, Lubbock, TX 79401, USA
L. Grave de Peralta
Affiliation:
Department of Electrical Engineering, Texas Tech University, Lubbock, TX 79401, USA
T. Prokofyeva
Affiliation:
Department of Physics, Texas Tech University, Lubbock, TX 79401, USA
M. Holtz
Affiliation:
Department of Physics, Texas Tech University, Lubbock, TX 79401, USA
R. Asomoza
Affiliation:
SIMS laboratory of SEES, Department of Electrical Engineering, CINVESTAV, Mexico D.F. Mexico
Yu. Kudryavtsev
Affiliation:
SIMS laboratory of SEES, Department of Electrical Engineering, CINVESTAV, Mexico D.F. Mexico
H. Temkin
Affiliation:
Department of Electrical Engineering, Texas Tech University, Lubbock, TX 79401, USA
Get access

Abstract

We report the results of epitaxial growth experiments on AlxGa1−xN (0≤ x ≤ 1) on Si(111) and sapphire substrates aimed at understanding the origin and elimination of cracking. We describe growth procedures resulting in thick layers of AlxGa1−xN, grown by gas source molecular beam epitaxy with ammonia, that are free of cracks. In GaN layers with the thickness of ∼2.5 µm, we find the background electron concentration of (1-2)×1016 cm−3 and mobility of (800±100) cm2/Vs. In AlxGa1−xN (0.2 < x < 0.6) with the film thickness of 0.5-0.7 µm the electron concentration of (2-3)×1016 cm−3 is obtained. Low background concentrations in GaN allow for formation of p-n junctions by doping with Mg. Light emitting diodes with the peak emission at 380 nm have been demonstrated.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Aktas, O., Kim, W., Fan, Z., Botchkarev, A., Salvador, A., Mohammad, S. N., Sverdlov, B., and Morkoç, H., Electron. Lett., 31, 1389 (1995).Google Scholar
2. Molnar, R. J., Singh, R., and Moustakas, T., Appl. Phys. Lett., 66, 268 (1995).Google Scholar
3. Grandjean, N., Massies, J., Leroux, M., and Lorenzini, P., Appl. Phys. Lett., 72, 82 (1998).Google Scholar
4. Guha, S. and Bojarzuk, N. A., Appl. Phys. Lett., 72, 415 (1998).Google Scholar
5. Smorchkova, I. P., Haus, E., Heying, B., Kozodoy, P., Fini, P., Ibbetson, J. P., Keller, S., DenBaars, S. P., Speck, J. S., and Mishra, U. K., Appl. Phys. Lett., 76, 718 (2000).Google Scholar
6. Sánchez-García, M. A., Narajo, F. B., Pau, J. L., Jimenez, A., Calleja, E., and Muñoz, E., J. Appl. Phys. Lett., 87, 1569 (2000).Google Scholar
7. Deelman, P. W., Bicknell-Tassius, R N., Nikishin, S. A., Kuryatkov, V. V., and Temkin, H., Appl. Phys. Lett. 78, (2001).Google Scholar
8. Grandjean, N., Massies, J., Damilano, B., Karpov, S. Yu., and Talalaev, R. A., Appl. Phys. Lett. 74, 1854 (1999);Google Scholar
9. Karpov, S. Yu., Talalaev, R. A., Makarov, Yu. N., Grandjean, N., Massies, J., and Damilano, B., Surface Science, 450, 191 (2000).Google Scholar
10. Tang, H., and Webb, J. B., Appl. Phys. Lett., 74, 2373 (1999).Google Scholar
11. Calleja, E., nchez-García, M. A. Sá, Monory, E., Sánchez, F.J., Muňoz, E., Sanz-Hervás, A., Villar, C., and Aguilar, M., J. Appl. Phys. 82, 4681 (1997).Google Scholar
12. Yasutake, K., Takeuchi, A., H Kakiuchi, and Yoshii, K., J. Vac. Sci. Technol. A 16, 2140 (1998).Google Scholar
13. Hellman, E. S., D. Buchanan, N. E., and Chen, C. H., MRS Internet J. Nitride Semicond. Res. 3, 43 (1998).Google Scholar
14. Kipshidze, G., Schenk, H. P., Fissel, A., Kaiser, U., Schulze, J., Richter, Wo., Weihnacht, M., Kunze, R., and Kräusslich, J., Semiconductors, 33, 1241 (1999) and references therein.Google Scholar
15. Nikishin, S. A., Antipov, V. G., Francoeur, S., Faleev, N. N., Seryogin, G. A., Elyukhin, V. A., Temkin, H., Prokofyeva, T. I., Holtz, M., Konkar, A., and Zollner, S., Appl. Phys. Lett., 75, 484 (1999).Google Scholar
16. Grandjean, N., Massies, J., and Leroux, M., Appl. Phys. Lett., 69, 2071 (1996).Google Scholar
17. Nikishin, S. A., Francoeur, S., and Temkin, H., MRS Symposium Proceenings, GaN and Related Alloys-2000, paper G6.57Google Scholar
18. Nikishin, S. A., Faleev, N. N., Antipov, V. G., Francoeur, S., Peralta, L. Grave de, Seryogin, G. A., Temkin, H., Prokofyeva, T. I., Holtz, M., Chu, S. N. G., Appl. Phys. Lett., 75, 2073 (1999).Google Scholar
19. Faleev, N. N., Zubrilov, A. S., Antipov, V. G., and Temkin, H., Appl. Phys. Lett., 76, 3028 (2000).Google Scholar
20. Nikishin, S. A., and Temkin, H., (unpublished).Google Scholar
21. Brunner, D., Angerer, H., Bustarret, E., Freudenberg, F., Höpler, R., Dimitrov, R., Ambacher, O., and Stutzmann, M., J. Appl. Phys. 82, 5090 (1997).Google Scholar
22.M. Khan, R. H., Koide, Y., Itoh, H., Sawaki, N., and Akasaki, I., Solid State Communications, 60, 509 (1986).Google Scholar
23. Zubrilov, A. S., Melnik, Yu. V., Nikolaev, A. E., Tsvetkov, D. V., Tretyakov, V. V., Jakobson, M. A., Nelson, D. K., Dmitriev, V. A.. 2nd Russian Workshop Gallium Nitride, Indium Nitride, Aluminum Nitride: Structures and Devices (June 2, 1998, St.Petersburg, Russia) p.34 /in Russian].Google Scholar
24. Walle, C. G. Van de, Stampfl, C., and Neugebauer, J., J. Cryst. Growth, 189/190, 505 (1998).Google Scholar
25. Reboredo, F. A., and Pantelides, S. T., Phys. Rev. Lett., 82, 1887 (1999).Google Scholar
26. Bungaro, C., Rapcewicz, K., and Bernholc, J., Phys. Rev. B, 59, 9771 (1999).Google Scholar
27. Daudin, B., Mula, G., Peyla, P., Phys. Rev. B, 61, 10330 (2000).Google Scholar
28. Cheng, T. S., Novikov, S. V., Foxon, C. T., and Orton, J. W., J. Cryst. Growth, 109, 439 (1999)Google Scholar
29. Kim, W., Salvador, A., Botchkarev, A. E., Aktas, Ö., Mohammad, S. N., and Morkoç, H., Appl. Phys. Lett. 69, 559 (1996).Google Scholar