Hostname: page-component-5c6d5d7d68-thh2z Total loading time: 0 Render date: 2024-08-15T10:06:08.891Z Has data issue: false hasContentIssue false

Gas Phase Reactions Relevant to Chemical Vapor Deposition: Optical Diagnostics

Published online by Cambridge University Press:  21 February 2011

D. Burgess Jr*
Affiliation:
National Institute of Standards and Technology, Gaithersburg, MD 20899
Get access

Abstract

Laser photolysis, optical emission, and laser-induced fluorescence (LIF) were used to investigate laser driven decomposition processes in the gas phase pertaining to the systems: SiH4 → Si (s) and SiH4 → NH3 → Si3N4 (s). These processes are important to silicon/ silicon-nitride chemical vapor deposition, flame-driven gas phase silicon-particle nucleation, and laser-induced processes for materials fabrication. UV laser photolysis was used to generate SiHx and NHx species from silane and ammonia. A number of photofragments were identified by emission from excited states. The rate of reaction of NH2 with silane was measured using LIF to detect NH2 as a function of time following photolysis of ammonia

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Jasinski, J.M., Meyerson, B.S., and Scott, B.A., Ann. Rev. Phys. Chem. 38, 109 (1987).Google Scholar
2.Sawrey, B.A., O'Neal, H.E., and Ring, M.A., Organometallics 6, 720 (1987).Google Scholar
3.Eley, C.D., Rowe, M.C.A., and Walsh, R., Chem. Phys. Left. 126, 153 (1986).Google Scholar
4.Slagle, I.R., Bernhardt, J.R., and Gutman, D., Chem. Phys. Lett. 149, 180 (1988).Google Scholar
5.Heintze, M. and Veprek, S., Appl. Phys. Lett. 54, 1321 (1989).Google Scholar
6.Chu, J.O., Begemann, M.H., McKillop, J.S., and Jasinski, J.M., Chem. Phys. Lett. 155, 576 (1989).Google Scholar
7.Sugawara, K., Nakanaga, T., Takeo, H., and Matsumura, C., Chem. Phys. Lett. 157, 309 (1989).Google Scholar
8.Sedgwick, T.O., Smith, J.E. Jr., Ghez, R., and Cowher, M.E., J. Crystal Growth 31, 264 (1975).Google Scholar
9.Ho, P. and Breiland, W.G., Appl. Phys. Lett. 44, 51 (1984).Google Scholar
10.Inoue, G. and Suzuki, M., Chem. Phys. Lett. 122, 361 (1985).Google Scholar
11.Breiland, W.G., Ho, P., and Coltrin, M.E., J. Appl. Phys. 60, 1505 (1986).Google Scholar
12.Begemann, M.H., Dreyfus, R.W., and Jasinski, J.M., Chem. Phys. Lett. 155, 351 (1989).Google Scholar
13.Johnson, R.D., III and Hudgens, J.W., Chem. Phys. Lett. 141, 63 (1987).Google Scholar
14.Robertson, R.M. and Rossi, M.J., J. Chem. Phys. 91, 5037 (1989).Google Scholar
15.Zachariah, M.R. and Joklik, R.G., J. Appl. Phys., accepted.Google Scholar
16.Zachariah, M.R., Chin, D., Katz, J.L, and Semerjian, H.G., Combustion and Flame, in press.Google Scholar
17.Zachariah, M.R. and Semerjian, H.G., J. AIChE 35, 2003 (1989).Google Scholar
18.Burgess, D., Jr. and Zachariah, M.R., MRS Proc. 168, this issue.Google Scholar
19.Watanabe, K., J. Chem. Phys. 22, 1564 (1954).Google Scholar
20.Atakan, B., Jacobs, A., Wahl, M., Weller, R., and Wolfrum, J., Chem. Phys. Lett. 155, 609 (1989).Google Scholar
21.Harada, Y., Murrell, N.N., and Sheena, H.H., Chem. Phys. Lett. 1, 595 (1968).Google Scholar
22.Fuchs, C., Boch, E., Fogarassy, E., Aka, B., and Siffert, P., MRS Proc. 101, 361 (1988).Google Scholar
23.Dressier, K. and Ramsay, D.A., Phil. Trans. A 251, 553 (1959).Google Scholar
24.Halpern, J.B., Hancock, G., Lenzi, M., and Welge, K.H., J. Chem. Phys. 63, 4808 (1975).Google Scholar
25.Smith, W.H., Brzozowski, J., and Erman, P., J. Chem. Phys. 64, 4628 (1976).Google Scholar
26.Carlson, T.A., Copley, J., Duric, N., Elander, N., Erman, P., Larsson, M., and Lyyra, M., Astron. Astrophys. 83, 238 (1980).Google Scholar
27.Francisco, J.S., Barnes, R., and Thoman, J.W. Jr., J. Chem. Phys. 88, 2334 (1988).Google Scholar
28.Wong, C.-H., J. Phys. Chem. 91, 5054 (1987).Google Scholar
29.Jasinski, J.M., Beach, D.B., and Estes, R.D., MRS Proc. 131, 501 (1989).Google Scholar
30.Demissy, M. and Lesclaux, R., J. Am. Chem. Soc. 102, 2897 (1980).Google Scholar
31.Marshall, P. and Fontijn, A., J. Chem. Phys. 85, 2637 (1986).Google Scholar