Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-20T04:22:52.862Z Has data issue: false hasContentIssue false

Garnet-type Li7La3Zr2O12 Electrolyte Prepared by a Solution-Based Technique for Lithium ion battery

Published online by Cambridge University Press:  09 August 2012

Jiajia Tan
Affiliation:
Nanomaterials Research Laboratory, Department of Materials Science and Engineering, University of Utah, Salt Lake City, UT 84112, U.S.A.
Ashutosh Tiwari
Affiliation:
Nanomaterials Research Laboratory, Department of Materials Science and Engineering, University of Utah, Salt Lake City, UT 84112, U.S.A.
Get access

Abstract

High quality garnet-type Li7La3Zr2O12 solid electrolyte was synthesized using a solution-based technique. The electrolyte pellets were sintered at 900 oC, resulting in tetragonal phase, which then transformed to cubic phase after annealing at 1230 oC. The ionic conductivity of both phases was studied and revealed to be 3.67x10-7 S/cm and 1.67×10-4 S/cm, respectively. A proto-type cell comprising of Li7La3Zr2O12 electrolyte, LiCoO2 cathode and lithium metal anode was assembled. The cell made with the cubic phase electrolyte exhibited superior performance than the one made with the tetragonal phase electrolyte. The former cell possessed a very promising gravimetric discharge capacity of 3.4 mAh/g, which is the highest value obtained among similar setups.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ohta, N., Takada, K., Zhang, L., Ma, R., Osada, M., Sasaki, T., Adv. Mater. 18, 2226 (2006).Google Scholar
2. Brousse, T., Fragnaud, P., Marchand, R., Schleich, D.M., Bohnke, O., West, K., J. Power Sources 68, 412 (1997).Google Scholar
3. Dudney, N. J., Neudecker, B. J., Curr. Opin. Solid State Mater. Sci. 4, 479 (1997).Google Scholar
4. Tatsumisago, M., Mizuno, F., Hayashi, A., J. Power Sources 159, 193 (2006).Google Scholar
5. Murugan, R., Thangadurai, V., Weppner, W., Angew. Chem. Int. Ed. 46, 7778 (2007).Google Scholar
6. Kotobuki, M., Munakata, H., Kanamura, K., Sato, Y., Yoshida, T., J. Electrochem. Soc. 157, A1076 (2010).Google Scholar
7. Awaka, J., Kijima, N., Hayakawa, H., Akimoto, J., J. Solid State Chem. 182, 2046 (2009).Google Scholar
8. Geiger, C. A., Alekseev, E., Lazic, B., Fisch, M., Armbruster, T., Langner, R., Fechtelkord, M., Kim, N., Pettke, T., Weppner, W., Inorg. Chem. 50, 1089 (2011).Google Scholar
9. Awaka, J., Takashima, A., Kataoka, K., Kijima, N., Idemoto, Y., Akimoto, J., Chem. Lett. 40, 60 (2011).Google Scholar
10. Kim, K. H., Iriyama, Y., Yamamoto, K., Kumazaki, S., Asaka, T., Tanabe, K., Fisher, C. A.J., Hirayama, T., Murugan, R., Ogumi, Z., J. Power Sources 196, 764 (2011).Google Scholar
11. Tan, J. and Tiwari, A., Electrochem. Solid-State Lett. 15, A37 (2012).Google Scholar
12. Kuhn, A., Narayanan, S., Spencer, L., Goward, G., Thangadurai, V. and Wilkening, M., Phys. Rev. B 83, 094302 (2011).Google Scholar
13. Kokal, I., Somer, M., Notten, P.H.L. and Hintzen, H.T., Solid State Ionics 185, 42 (2011).Google Scholar