Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-24T18:50:23.840Z Has data issue: false hasContentIssue false

Gap State Distribution and Interface States in a-Si:H and a-SiGe:H by Modulated Photocurrent

Published online by Cambridge University Press:  26 February 2011

G. Schumm
Affiliation:
Universität Stuttgart, Institut für Physikalische Elektronik, Pfaffenwaldring 47, D-7000 Stuttgart 80, Federal Republic of Germany
K. Nitsch
Affiliation:
Instytut Technologii Elektronowej, Politechniki Wroclawskiej, Wybrzeze Wyspianskiego 27, 50–370 Wroclaw, Poland
M. B. Schubert
Affiliation:
Universität Stuttgart, Institut für Physikalische Elektronik, Pfaffenwaldring 47, D-7000 Stuttgart 80, Federal Republic of Germany
G. H. Bauer
Affiliation:
Universität Stuttgart, Institut für Physikalische Elektronik, Pfaffenwaldring 47, D-7000 Stuttgart 80, Federal Republic of Germany
Get access

Abstract

The energy distribution of localized states above the Fermi level in undoped a-Si:H and a-SiGe:H has been determined by phase shift analysis of modulated photocurrents. (1) A peak in the DOS with 0.56 – 0.65 eV activation energy has been found, reflecting the D -state of isolated dangling bonds. A second peak with 0.35 eV activation energy has been detected which is attributed to the T3+-state of T3+-T3 -pairs or to the antibonding state of weak Si-Si bonds, respectively. Strong illumination raises the lower peak and quenches the upper one supporting a shallow state - deep state conversion model. (2) From temperature-dependent measurements a shift of the dominant electron transport path into the tail with decreasing temperature - associated with tail state hopping - has been obtained.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Oheda, H., J. Appl. Phys., 52, 6693 (1981).CrossRefGoogle Scholar
2. Li, R.-L. and Jonscher, A.K., Semic. Sci. Technol. 2, 233 (1987).CrossRefGoogle Scholar
3. Adler, D., J. Phys., Paris, 42, C43 (1981).CrossRefGoogle Scholar
4. Adler, D., Sol. Cells 9, 133 (1983)CrossRefGoogle Scholar
5. Stutzmann, M., Phil. Mag. B 56, 63 (1987).CrossRefGoogle Scholar
6. Stutzmann, M., Jackson, W.B. and Tsai, C.C., Phys. Rev. B 32, 23 (1985).CrossRefGoogle Scholar
7. GrOnewald, M. and Thomas, P., Phys. Stat. Sol. b 94, 125 (1979).CrossRefGoogle Scholar
8. Shapiro, F.R. and Adler, D., J. Non-Cryst. Solids 74, 189 (1985).CrossRefGoogle Scholar
9. M~ller, H. and Thomas, P., J. Phys. C 17, 5337 (1984).CrossRefGoogle Scholar
10. Fenz, P., Muller, H., Overhof, H. and Thomas, P., J. Phys. C 18, 3191 (1985).CrossRefGoogle Scholar
11. LeComber, P.G. and Spear, W.E., Phil. Mag. B 53, L1 (1986).CrossRefGoogle Scholar
12. Bar-Yam, Y., Adler, D., Joannopoulos, J.D., Phys. Rev. Lett. 57, 467 (1986)CrossRefGoogle Scholar
13. Bar-Yam, Y. and Joannopoulos, J.D., J. Non-Cryst. Solids 97–98, 467 (1987)CrossRefGoogle Scholar
14. Robertson, J., J. Non-Cryst. Solids 77–78, 37 (1985)CrossRefGoogle Scholar
15. Monroe, D., Phys. Rev. Lett. 54, 146 (1985)CrossRefGoogle Scholar
16. Spear, W.E., Hourd, A.C., Kinmond, S., J. Non-Cryst. Solids 77–78, 607 (1985).CrossRefGoogle Scholar
17. Mencaraglia, D. and Kleider, J.P., Phil. Mag. B 55, 63 (1987).Google Scholar
18. Nebel, C.E., Weller, H. and Bauer, G.H., this volume (1988).Google Scholar