Hostname: page-component-5c6d5d7d68-qks25 Total loading time: 0 Render date: 2024-08-18T01:19:43.229Z Has data issue: false hasContentIssue false

Gan Nucleation Mechanism on A Surface Template of Oxidized AIAs

Published online by Cambridge University Press:  10 February 2011

Nobuhiko P. Kobayashia
Affiliation:
Department of Materials Science and Engineering, Compound Semiconductor Laboratory, University of Southern California Los Angeles, California 90089-0241 Compound Semiconductor Laboratory, University of Southern California Los Angeles, California 90089-0241, nkobayas@scf.usc.edu
Junko T. Kobayashia
Affiliation:
Department of Materials Science and Engineering, Compound Semiconductor Laboratory, University of Southern California Los Angeles, California 90089-0241
Won-Jin Choib
Affiliation:
Department of Electrical Engineering/Electrophysics, Compound Semiconductor Laboratory, University of Southern California Los Angeles, California 90089-0241
P. Daniel Dapkusa
Affiliation:
Department of Materials Science and Engineering, Compound Semiconductor Laboratory, University of Southern California Los Angeles, California 90089-0241 Department of Electrical Engineering/Electrophysics, Compound Semiconductor Laboratory, University of Southern California Los Angeles, California 90089-0241
Get access

Abstract

The surfaces of oxidized AlAs (AlOx) layers on Si(111) substrates are studied to understand the mechanism by which single crystal α-GaN can be grown by metalorganic chemical vapor deposition (MOCVD) on AlOx that appears to be an amorphous/fine-grain phase. Contact mode atomic force microscopy (C-AFM) and reflection high energy electron diffraction (RHEED) are used to study the AIOx surface on which a GaN nucleation layer (GaN-NL) is grown. The results indicate that an oriented α-Ga2O3 layer is formed on AlOx which is covered by a GaAs cap layer during oxidation. We infer that the α-Ga2O3 acts as a surface template that provides the order necessary for the subsequent growth of single crystal α-GaN. Characterization using RHEED and selective area electron diffraction (SAD) in cross sectional transmission microscopy (XTEM) reveals that the in-plane crystallographic orientation has a unique alignment between the various layers – GaN, α-Ga2O3 and the Si substrate. This in-plane alignment is understood by considering the atomic arrangement of each material on the plane perpendicular to [111]si at each interface. Moreover a comparison is made between α-GaN grown on α-Ga2O3 and on α-A12O3(0001) to characterize structural defects in α-GaN. The formation of specific structural defects, a large number of planar defects run perpendicular to [111]si in α-GaN/α-Ga2O3 is discussed in conjunction with GaN-NL on α-Ga2O3.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Guha, S. and Bojarczuk, n. A., Appl. Phys. Lett. 72, 415 (1998).Google Scholar
[2] Osinsky, A., Gangopadhyay, S., Yang, J. W., Gaska, R., Kuksenkov, D., Temkin, H., Shmagin, I. K., Chang, Y. C., Muth, J. F., Appl. Phys. Lett. 72, 551 (1998).Google Scholar
[3] Sanchezgarcia, M. A., Calleja, E., Monroy, E., Sanchez, F. J., Calle, F., Munoz, E., and Beresford, R., J. Crystal Growth 183, 23 (1998).Google Scholar
[4] Wang, L. S., Liu, X. L., Zan, Y. D., Wang, J., Wang, D., Lu, D. C., Wang, Z. G., Appl. Phys. Lett. 72, 109 (1998).Google Scholar
[5] Kobayashi, N. P., Kobayashi, J. T., Dapkus, P. D., Choi, W.-J., and Bond, A. E., Appl. Phys. Lett. 71, 3569 (1997).Google Scholar
[6] Akiyama, M., Kawarada, Y., Ueda, T., Nishi, S., and Kaminishi, K., J. Crystal. Growth 77, 490 (1986).Google Scholar
[7] Kobayashi, J. T., Kobayashi, N. P., and Dapkus, P. D., J. Electron. Mater. 26, 1114 (1997).Google Scholar
[8] Ashby, C. I. H., Sullivan, J. P., Newcomer, P. P., Missert, N. A., Hou, H. Q., Hammons, B. E., Hafich, M. J., and Baca, A. G., Appl. Phys. Lett. 70, 2443 (1997).Google Scholar
[9] Twesten, R. D., Follstaedt, D. M., Choquette, K. D., and Schneider, R. P., Jr., Appl. Phys. Lett. 69, 19 (1996).Google Scholar
[10] Guha, S., Agahi, F., Pezeshki, B., Kash, J. A., Kisker, D. W., and Bojarczuk, N. A., Appl. Phys. Lett. 68, 906 (1996).Google Scholar
[11] J-Phillipp, N. Y., Phillip, F., Marschner, T., Stolz, W., and Gobel, E. O., J. Cyst. Growth 158, 28 (1996).Google Scholar
[12] Yoshimoto, M., Maeda, T., Ohnishi, T., Koinuma, H., Ishiyama, O., Shinohara, M., Kubo, M., Miura, R., and Miyamoto, A., Appl. Phys. Lett. 67, 2615 (1995).Google Scholar
[13] Kaischew, A., Bull. Bulg. Acad. Sci. (Phys. Series) 2, 191 (1951).Google Scholar
[14] Wu, X. H., Kapolnek, D., Tarsa, E. J., Heying, B., Keller, S., Keller, B. P., Mishra, U. K., DenBaars, S. P., and Speck, J. S., Appl. Phys. Lett. 68, 1371 (1996).Google Scholar
[15] Qian, W., Skowronski, M., De Graef, M., Doverspike, k., Rowland, L. b., and Gaskill, D. K., Appl. Phys. Lett. 66, 1252 (1995).Google Scholar
[16] Powell, R. C., Lee, N. -E., and Greene, J. E., Appl. Phys. Lett. 60, 2505 (1992).Google Scholar
[17] Liliental-Weber, Z., Chen, Y., Ruvimov, S., and Washburn, J., Phys. Rev. Lett. 79, 2835 (1997).Google Scholar
[18] Wright, A. F., J. Appl. Phys. 82, 5259 (1997).Google Scholar